Categories: Cosmology

New “Map” Could Help Solve Ancient Mysteries of Our Galaxy

An international team of astronomers from the Sloan Digital Sky Survey unveiled a new detailed map of the chemical composition of more than 2.5 million stars in the Milky Way. This new map could help reveal the unknown ancient history of our galaxy. “With the new SDSS map, astronomers can begin to tackle many unsolved mysteries about the birth and growth of the Milky Way,” said Zeljko Ivezic, a University of Washington astronomer, and leader of the study.

Astronomers use the term “metals” to describe all elements heavier than hydrogen and helium, including the oxygen we breathe, the calcium in our bones, and the iron in our blood. Although hydrogen, helium and traces of lithium were created at the beginning of the Universe in the Big Bang, all other elements (such as iron and carbon) were forged in the cores of stars or during the explosive deaths of massive stars.

As a result, stars that formed early in the history of the Galaxy (some 13 billion years ago) were made of gas that had few metals created by the generations of stars that came before. These “metal-poor stars” provide astronomers with a chemical fingerprint of the origin and evolution of the elements. As subsequent generations of stars formed and died, they returned some of their metal-enriched material to the interstellar medium, the birthplace of later generations of stars, including our Sun.

Previous chemical composition maps were based on much smaller samples of stars and didn’t go as far as the distances surveyed by SDSS-II — a region extending from near the Sun to about 30,000 light years away. The construction and first implications of the map are described in a paper titled “The Milky Way Tomography with SDSS: II. Stellar Metallicity,” slated to appear in the August 1 issue of The Astrophysical Journal.

“By mapping how the metal content of stars varies throughout the Milky Way, astronomers can decipher star formation and evolution, just as archaeologists reveal ancient history by studying human artifacts,”explained University of Washington graduate student Branimir Sesar, a member of the research team.

Sources: ArXiv, Sloan Digital Sky Survey

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

10 hours ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

14 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

18 hours ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

1 day ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

2 days ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 days ago