Categories: Cosmology

New “Map” Could Help Solve Ancient Mysteries of Our Galaxy

An international team of astronomers from the Sloan Digital Sky Survey unveiled a new detailed map of the chemical composition of more than 2.5 million stars in the Milky Way. This new map could help reveal the unknown ancient history of our galaxy. “With the new SDSS map, astronomers can begin to tackle many unsolved mysteries about the birth and growth of the Milky Way,” said Zeljko Ivezic, a University of Washington astronomer, and leader of the study.

Astronomers use the term “metals” to describe all elements heavier than hydrogen and helium, including the oxygen we breathe, the calcium in our bones, and the iron in our blood. Although hydrogen, helium and traces of lithium were created at the beginning of the Universe in the Big Bang, all other elements (such as iron and carbon) were forged in the cores of stars or during the explosive deaths of massive stars.

As a result, stars that formed early in the history of the Galaxy (some 13 billion years ago) were made of gas that had few metals created by the generations of stars that came before. These “metal-poor stars” provide astronomers with a chemical fingerprint of the origin and evolution of the elements. As subsequent generations of stars formed and died, they returned some of their metal-enriched material to the interstellar medium, the birthplace of later generations of stars, including our Sun.

Previous chemical composition maps were based on much smaller samples of stars and didn’t go as far as the distances surveyed by SDSS-II — a region extending from near the Sun to about 30,000 light years away. The construction and first implications of the map are described in a paper titled “The Milky Way Tomography with SDSS: II. Stellar Metallicity,” slated to appear in the August 1 issue of The Astrophysical Journal.

“By mapping how the metal content of stars varies throughout the Milky Way, astronomers can decipher star formation and evolution, just as archaeologists reveal ancient history by studying human artifacts,”explained University of Washington graduate student Branimir Sesar, a member of the research team.

Sources: ArXiv, Sloan Digital Sky Survey

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

We Understand Rotating Black Holes Even Less Than We Thought

The theory of black holes has several mathematical oddities. Recent research shows our understanding of…

4 hours ago

Habitable Worlds are Found in Safe Places

When we think of exoplanets that may be able to support life, we hone in…

4 hours ago

New Glenn Booster Moves to Launch Complex 36

Nine years ago, Blue Origin revealed the plans for their New Glenn rocket, a heavy-lift…

4 hours ago

How Many Additional Exoplanets are in Known Systems?

NASA's TESS mission has turned up thousands of exoplanet candidates in almost as many different…

8 hours ago

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

15 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

23 hours ago