In 2017, astronomers used ALMA (Atacama Large Millimeter/sub-millimeter Array) to look at the star AB Aurigae. It’s a type of young star called a Herbig Ae star, and it’s less then 10 million years old. At that time, they found a dusty protoplanetary disk there, with tell-tale gaps indicating spiral arms.
Now they’ve taken another look, and found a very young planet forming there.
Young Herbig Ae stars like AB Aurigae are of great interest to astronomers. They’re so young they’re not main sequence stars yet, and they’re still surrounded by their circumstellar disk of gas and dust. And out of that gas and dust, young planets are forming.
The disk around AB Aurigae, which is over 500 light years away, has spiral arms that meet in a knot. Scientists believe that the knot is the precise point where a young planet is forming. A new study used the SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) instrument on the Very Large Telescope (VLT) to take a closer look at AB Aurigae and the planets developing inside its disk.
The new study is titled “Possible evidence of ongoing planet formation in AB Aurigae.” Lead author of the study is Anthony Boccaletti from the Observatoire de Paris, PSL University, France. The paper is published in the journal Astronomy and Astrophysics.
“Thousands of exoplanets have been identified so far, but little is known about how they form,” said lead author Boccaletti in a press release. Observing young, still-forming planets is a big deal in astronomy right now, but it’s difficult. The circumstellar disk around the star is difficult to see into, and even our best technology is barely up to the task.
The SPHERE instrument was critical to this work. It’s an advanced adaptive optics system, combined with a coronoagraph. It was developed to advance the study of exoplanets, with low-resolution spectrographic and polarimetric images. It images in both optical and infrared light. SPHERE allowed the team behind this study to focus on the earliest stages of planetary formation.
“We need to observe very young systems to really capture the moment when planets form,” said Boccaletti. That twisted knot where the spiral arms of AB Aurigae’s circumstellar disk meet is as close as we’ve come to capturing that moment.
These spirals indicate the birth of a baby planet. That’s because the planet’s mass has an effect on the less dense gas and dust in the disk. Essentially, the planet kicks the material in the disk, creating a visible wave: the spirals.
According to Emmanuel Di Folco of the Astrophysics Laboratory of Bordeaux (LAB), France, who took part in this study, the young planets create “disturbances in the disc in the form of a wave, somewhat like the wake of a boat on a lake.” And as the young planet rotates around the central star, those disturbances become spiral arms.
In their paper the authors caution us that we’re still learning what goes on inside these circumstellar veils that surround young stars. We’re still in the early days of seeing into those structures, and they aren’t certain that this twist is a planet.
“SPHERE has delivered the deepest images ever obtained for AB Aur in scattered light. Among the many structures that are yet to be understood, we identified not only the inner spiral arms, but we also resolved a feature in the form of a twist in the eastern spiral at a separation of about 30 au.”
Are they certain it’s a planet? Not exactly, but the twist feature matches modelling. “The twist of the spiral is perfectly reproduced with a planet-driven density wave model when projection effects are accounted for,” the authors write.
Initial observations of AB Aurigae made with ALMA, but without SPHERE, showed the pair of spiral arms. But ALMA alone didn’t reveal as much information. It revealed tantalizing hints, though, that planets were forming.
Though ALMA is a powerful tool, SPHERE is even more powerful. It can see the very faint light from dust grains, and emissions that come from the inner disk. Astronomers were able to see the details in the spirals, and the “twist” at their center.
“The twist is expected from some theoretical models of planet formation,” says co-author Anne Dutrey, also at LAB. “It corresponds to the connection of two spirals — one winding inwards of the planet’s orbit, the other expanding outwards — which join at the planet location. They allow gas and dust from the disc to accrete onto the forming planet and make it grow.”
There’s ample theory to support the birth of planets at the twist point. “In the early stage of planet formation, hydrodynamical simulations indicate that the accretion process generates at the planet location an inner and outer spiral pattern due to Lindblad resonances induced by disk-planet interactions,” the team writes.
But the observational evidence to back it all up has been difficult to come by. This study presents some of the best observations yet that back the theory up.
In their conclusion, the authors write “…the SPHERE observations of AB Aur in scattered light combined to the ALMA data in the thermal regime provide strong evidence that we are actually witnessing ongoing planet formation revealed by its associated spiral arms.”
But it’s not proven yet. “Further observations would be required to confirm this result and to derive better mass estimates for potential planets in this location.”
Those further observations might not be too far in the future. The ESO’s Extremely Large Telescope (ELT) should see first light in 2025. With a 39 meter mirror, the ELT will be an enormous boost to our astronomical observing power.
“We should be able to see directly and more precisely how the dynamics of the gas contributes to the formation of planets,” lead author Boccaletti concluded.
More:
- Press Release: ESO Telescope Sees Signs of Planet Birth
- Research Paper: Possible evidence of ongoing planet formation in AB Aurigae
- Universe Today: Are the Gaps in These Disks Caused by Planets?
As an illustration that we are still learning, another recent publication is competing a binary star hypothesis – the to and fro’ is described in a new article here: https://www.sciencealert.com/a-dust-swirl-attributed-to-a-baby-planet-could-be-something-else .
The binary star hypothesis team claim that they can’t get the twist from planet simulation but a binary star fits perfectly. The planet team may have the day though, unless there is something wrong with their own simulations, especially since they claim they have a simpler model and more data as well as should see a star but doesn’t.
“As Boccaletti explained to ScienceAlert, although Poblete’s team’s model is more complex than the work of his own team, his team had access to more information. “We have new data from SPHERE,” Boccaletti told ScienceAlert, referring to the adaptive optics system attached to the Very Large Telescope in Chile.” “ALMA and SPHERE are not observing the same light and are not sensitive to the same component. SPHERE is sensitive to the scattered light by the dust from the star. It is also very sensitive to stars themselves.” “Although we used different information,” he added, “there is a good chance that if a stellar companion were responsible for the spiral it would have been an obvious signal in the SPHERE image, unless the obscuration by the gas and dust is huge.”
“The next step is further observations, which can shed more light on the phenomenon and help reach a firmer conclusion. Both teams are working towards this end. According to Price, a binary companion would slightly displace AB Aurigae in the sky. If that’s the case, that displacement should be detectable in the next release of data from the Gaia satellite, which is mapping the Milky Way. Meanwhile, Boccaletti’s team is requesting more data from SPHERE to see if closer observations of the system can resolve AB Aurigae’s identity crisis.”