We recently observed the strongest magnetic field ever recorded in the Universe. The record-breaking field was discovered at the surface of a neutron star called GRO J1008-57 with a magnetic field strength of approximately 1 BILLION Tesla. For comparison, the Earth’s magnetic field clocks in at about 1/20,000 of a Tesla – tens of trillions of times weaker than you’d experience on this neutron star…and that is a good thing for your general health and wellbeing.
Neutron stars are the “dead cores” of once massive stars which have ended their lives as supernova. These stars exhausted their supply of hydrogen fuel in their core and a power balance between the internal energy of the star surging outward, and the star’s own massive gravity crushing inward, is cataclysmically unbalanced – gravity wins. The star collapses in on itself. The outer layers fall onto the core crushing it into the densest object we know of in the Universe – a neutron star. Even atoms are crushed. Negatively charged electrons are forced into the atomic nuclei meeting their positive proton counterparts creating more neutrons. When the core can be crushed no further, the outer remaining material of the star rebounds back into space in a massive explosion – a supernova. The resulting neutron star, made of the crushed stellar core, is so dense that a single sugar-cube-sized sampling would weigh billions of tons – as much as a mountain (though if you’re “worthy” you MIGHT able to lift it since Thor’s Hammer is made of the stuff). Neutron stars are typically about 20km in diameter and can still be a million degrees Kelvin at the surface.
But if they’re “dead,” how can neutron stars be some of the most magnetic and powerful objects in the Universe?
GRO J1008-57 is a spinning neutron star or “pulsar.” Pulsars were first discovered in 1967 by Jocelyn Bell through observations of a regular radio “pulse” of 1.33 seconds. The pulses were determined not to be of human origin so the object was designated – though facetiously – LGM1 (Little Green Men 1). A spinning neutron star projects a beam of energy along its magnetic poles that sweeps across space as the star rotates – like the beams from a turning lighthouse. Depending on the orientation of the star, those beams can sweep along Earth’s field of view resulting in a “pulse” of energy with each of the star’s rotations. But why do neutron stars have incredibly powerful magnetic fields? Seems counterintuitive given that they are made of neutrally charged particles (where neutron gets its name). Well, if you were to cut away a neutron star, it is formed of several layers. A cloud of remaining electrons near the surface, further down traces of charged “impurities” of various atomic nuclei remaining after the formation of the neutron star, a crust of neutrons, and a core of a theorized frictionless neutron fluid further mixed with impurities. The combination of layers makes the star incredibly conductive. Spin a very conductive object and you create a churning flow of charged particles which generates a powerful magnetic field. Our planet’s own magnetic field is itself created by the rotation of the Earth’s nickel-iron core. However, neutron star rotations are astonishingly fast. Like a figure skater retracting their arms to spin more quickly, the “angular momentum” of the original giant star, millions of kilomtetres in radius, is preserved and transferred to an ever faster spinning compact object only 10 km wide (imagine a spinning figure skater with arms millions of kilometres long pulling them all the way to the centre of their body). The first neutron star discovered had a rotation period of 1.33s. GRO J1008-57 is 93.3s. Some rotate in mere milliseconds. So, these “dead” stars are the size of a city, denser than any material in the universe, are a million degrees, and spin at a good fraction…of the speed of light. (BTW, on the theme of “dead” stars one of the Grateful Dead members, Mickey Hart, created songs out of pulsar beats.)
But how can we measure the strength of a pulsar’s magnetic energy? A special technique can be used with a specific class of pulsars which GRO J1008-57 belongs to called accretion powered X-Ray pulsars.
GRO J1008-57, about 20,000 light years from Earth, is actually in a binary gravitational relationship with a living class B companion star. B’s are hefty stars, a dozen or so times the mass of our Sun and thousands of times brighter. GRO J1008-57’s super density creates a powerful gravitational pull 100 billion times more powerful than Earth’s which rips stellar material off its companion. That material falls toward the neutron star. It becomes entangled in the neutron star’s magnetic field flowing along the “lines” of that field to the north and south magnetic poles where it accumulates or accretes on the surface.
The stellar material slams into the surface at half the speed of light releasing tremendous X-Ray energy. These X-Rays, before radiating away from the neutron star, pass through the magnetic field at the neutron star’s surface. The magnetic field scatters some of the X-Rays leaving a gap or “absorption line” in the spectrum of the X-Rays. It’s like a fingerprint left by the magnetic field on the X-Ray energy that we can see with our telescopes. Where that absorption line appears along the X-Ray spectrum directly relates to the strength of the magnetic field at the neutron star’s surface where the stellar material is falling. The line phenomenon is known as a Cyclotron Resonance Scattering Feature.
In 2017, the brightest X-Ray outburst ever observed from GRO J1008-57 was recorded by the Chinese Insight-HXMT satellite. A team of scientists from the Institute of High Energy Physics of the Chinese Academy of Sciences and Eberhard Karls University of Tübingen, Germany analyzed the Cyclotron abortion lines in the X-Ray spectrum received. The team recently announced they had discovered lines in the spectrum corresponding to a 1-billion Tesla magnetic field – the most powerful ever recorded in the Universe. Powerful enough to literally pull atoms apart. So, if it doesn’t vaporize you with its immense heat, or obliterating gravity, your atomic structure would basically dissolve in the magnetic forces.
At the Simon Fraser University Trottier Observatory, where I’ve done astrophotography imaging, we recently installed a spectrometer. Similar to Insight-HXMT, we observed spectra from objects in space – though in visible light rather than X-Rays. I was admittedly underwhelmed. I was used to seeing data come through the scope as these beautiful images of stars and galaxies rather than absorption lines in a spectrum. As I was interpreting the data, Dr. Howard Trottier, founder of the Observatory pointed at some lines in a spectrum and said, “that’s an accretion disk orbiting a star” and my mind exploded. Suddenly a line was a churning mass of plasma around some distant star. And that’s science!! A tiny line reveals a distant part of the Universe that we may not be able to “see” but can deduce through decades of research, and our imagination, transforming data into accretion disks, giant stars, plasma flying at near light-speeds, powerful X-Rays, and spinning stellar relics. SCIENCE!!
More to Explore:
Strongest Magnetic Field in the Universe Detected by X-Ray Space Observatory
Detection of Cyclotron Resonance Scattering Feature in High Mass X-ray Binary Pulsar SMC X-2
How are neutron stars magnetic? Ethan Siegel Starts with a Bang
NASA – “Imagine the Universe” “Pulsars”
What Magnetic Fields Do to Your Brain and Body – Discovery Magazine
The Theory of Cyclotron Lines in Accreting X-Ray Pulsars – Harvard
Cyclotron Lines in Highly magnetized Neutron Stars – Cornell University
We have been spoiled over recent years with first the Hubble Space Telescope (HST) and…
The Breakthrough Starshot program aims to cross the immense distances to the nearest star in…
The Earth has always been bombarded with rocks from space. It’s true to say though…
RALEIGH, N.C. — Particle physicist Hitoshi Murayama admits that he used to worry about being…
We are all familiar with the atmosphere of the Earth and part of this, the…
One explanation for dark matter is that it's made out of primordial black holes, formed…