Categories: Moon

This is a Landslide… on the Moon

Landslides bringing you down?

Landslides can be found all across our own planet Earth, on all seven continents plus the ocean floors. Similar large mass movements have been spotted around the Solar System on rocky worlds, including our companion, the Moon.

This image from the Lunar Reconnaissance Orbiter (LRO) shows an example of lunar landslides, with translational slides of regolith on the walls of Kepler Crater.

What causes landslides? On Earth, possible causes include released groundwater, wet or saturated soil, or thawing ice within soil. On the Moon, there is obviously no water to create conducive conditions for landslides or avalanches. Instead, it’s a matter of gravity.

Kepler Crater, as seen by the crew of Apollo 12. Credit: NASA.

Scientists say that loose material often moves down the steep slopes of impact craters – such as Kepler Crater, which is about 30 km (17 miles) in diameter.  The observation that such landslides exist on the Moon were first made during the Apollo program, as astronauts made observations and took images from the Command Module while in lunar orbit.

Massive Ice Avalanches on Iapetus
Landslides Work Differently on Mars and Now We Know Why

LRO’s high resolution cameras (LROC) have allowed scientists to study landscapes on the Moon in great detail. Planetary scientists know now that movement on the crater walls can be a grain by grain creep where material slowly creeps down the wall over time, or it can occur as a catastrophic event in which a large amount of debris cascades down the slope.

Numerous landslides line the walls of Kepler Crater, which has a slope of about 33 degrees.  In the lead image, the landslide of dark material begins about 100 meters below the rim of a narrow box canyon. The box canyon is about 50 meters wide and 300 meters long. The landslide extends about 2,300 meters from the end of the canyon to the base of the landslip.

Mid-slope portion of a  landslide mass on the wall of Kepler crater. Several individual slides can be seen on the margins; in the middle, the individual slides overlap each other Credit: NASA/GSFC/Arizona State University.

The image above shows a closer view of the flows. The LRO team says that the overlapping nature of these small slides indicate that the overall feature may have formed over a period of time, rather than all at once.

Kepler Crater and surrounding plains, afternoon lighting. Credit: NASA/GSFC/Arizona State University.

In this image, you can see how the walls of an impact craters can slowly slump as the crater ages due to wall material moving downslope onto the floor.

You can see more images of lunar landslides in Kepler Crater at the LROC website, here and here.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

20 minutes ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

13 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

13 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

15 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

17 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

20 hours ago