Categories: Fast Radio Bursts

Fast radio bursts within the Milky Way seem to be coming from magnetars

Fast radio bursts are some of the most mysterious events known in astronomy, but they are slowly becoming better understood. Case in point: recent observations of a fast radio burst in the Milky Way reveals the powerhouse behind the blasts: a flaring magnetar.

In 2007 astronomers first detected strange bursts of intense radio energy, known as (as you might have guessed) fast radio bursts, or FRBs for short. Subsequent observations – so far we’ve spotted only a couple dozen of them – revealed that these FRBs were 1) insanely powerful, and 2) coming from basically everywhere.

Indeed, the fact that they were coming from basically everywhere is the reason that astronomers figured that they were insanely powerful. In order to be detectable at extra-galactic distances, whatever is causing FRBs must be some of the most powerful explosions in the universe.

Additionally, to be that powerful in the radio end of the spectrum, there have to be magnetic fields involved. With strong enough magnetic fields, charged particles can wind themselves around in corkscrew paths, generating radio emissions.

It’s been suspected that magnetars – super-magnetized, rapidly-rotating neutron stars – may be the source of fast radio bursts, but all the known FRBs have been too far away to tell.

But recently, scientists caught a lucky break. Using the CHIME radio telescope, a group of astronomers were monitoring a magnetar in the Milky Way galaxy, a mere 30,000 light-years away. They were keeping a close eye on it because it was starting to flare up in X-ray emissions, and the astronomers were wondering if something else might be up.

They were right. Shortly after they began observations, the magnetar known only as SGR 1935+2154 began bursting in radio; a bona-fide fast radio burst, right there before our very telescopes.

Despite the new identification, scientists still aren’t exactly sure how a magnetar launches a fast radio burst. Hopefully we’ll get more lucky observations to tell us more.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

2 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

14 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

15 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

16 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

19 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

22 hours ago