Categories: Fast Radio Bursts

Fast radio bursts within the Milky Way seem to be coming from magnetars

Fast radio bursts are some of the most mysterious events known in astronomy, but they are slowly becoming better understood. Case in point: recent observations of a fast radio burst in the Milky Way reveals the powerhouse behind the blasts: a flaring magnetar.

In 2007 astronomers first detected strange bursts of intense radio energy, known as (as you might have guessed) fast radio bursts, or FRBs for short. Subsequent observations – so far we’ve spotted only a couple dozen of them – revealed that these FRBs were 1) insanely powerful, and 2) coming from basically everywhere.

Indeed, the fact that they were coming from basically everywhere is the reason that astronomers figured that they were insanely powerful. In order to be detectable at extra-galactic distances, whatever is causing FRBs must be some of the most powerful explosions in the universe.

Additionally, to be that powerful in the radio end of the spectrum, there have to be magnetic fields involved. With strong enough magnetic fields, charged particles can wind themselves around in corkscrew paths, generating radio emissions.

It’s been suspected that magnetars – super-magnetized, rapidly-rotating neutron stars – may be the source of fast radio bursts, but all the known FRBs have been too far away to tell.

But recently, scientists caught a lucky break. Using the CHIME radio telescope, a group of astronomers were monitoring a magnetar in the Milky Way galaxy, a mere 30,000 light-years away. They were keeping a close eye on it because it was starting to flare up in X-ray emissions, and the astronomers were wondering if something else might be up.

They were right. Shortly after they began observations, the magnetar known only as SGR 1935+2154 began bursting in radio; a bona-fide fast radio burst, right there before our very telescopes.

Despite the new identification, scientists still aren’t exactly sure how a magnetar launches a fast radio burst. Hopefully we’ll get more lucky observations to tell us more.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

17 hours ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

1 day ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

2 days ago

Webb Confirms a Longstanding Galaxy Model

The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…

2 days ago

The Aftermath of a Neutron Star Collision Resembles the Conditions in the Early Universe

Neutron stars are extraordinarily dense objects, the densest in the Universe. They pack a lot…

2 days ago

New View of Venus Reveals Previously Hidden Impact Craters

Think of the Moon and most people will imagine a barren world pockmarked with craters.…

2 days ago