Lately there has been a flood of interest in gravitational waves. After the first official detection at LIGO / Virgo in 2015, data has been coming in showing how common these once theoretical phenomena actually are. Usually they are caused by unimaginably violent events, such as a merging pair of black holes. Such events also have a tendency to emit another type of phenomena – light. So far it has been difficult to observe any optical associated with these gravitational-wave emitting events. But a team of researchers hope to change that with the full implementation of the Gravitation-wave Optical Transient Observer (GOTO) telescope.
The GOTO project is designed specifically to find and monitor the parts of the sky that other instruments, such as LIGO, detect gravitational waves from. Its original incarnation, known as the GOTO-4 Prototype, was brought online in 2017. Located in La Palma, in the Canary Islands, this prototype consisted of four “unit telescopes” (UTs) housed in an 18ft clamshell dome. In 2020, this prototype was upgraded to 8 UTs, allowing for a much wider view of the sky.
The wide field of view is necessary for its work detecting gravitational-wave based optical phenomena, as directionality of gravitational waves are notoriously difficult to pin down. The wider the field of view of a telescope, the more likely it will be able to detect an event that happens.
As such, the operators of GOTO started an upgrade plan in 2020. These upgrades included an additional 8 UT in a separate dome at the same observatory, which is due to be added in early 2021. More ambitiously, the team plans to recreate the two-unit array in La Palma at the Siding Spring Observatory in New South Wales, Australia. With these telescopes on opposite sides of the world, GOTO will “enable close to 24-hour observations, ensuring that GOTO is able to react to alerts whenever they occur” according to a recent paper.
Those alerts are an extremely important part of GOTO’s observational planning. They come from NASA’s Gamma-ray Coordination Network (GCN), an alert system that monitors not only gravitational waves, but also other phenomena that could produce interesting optical data, such as kilonovas or gamma ray bursts.
GOTO monitors this network through it’s software package, which is also a key component to overall system operation. The GOTO Telescope Control System (G-TeCS) is a custom written Python script that monitors for signals of interest, calculates which signal is the highest priority, and then physically moves the telescopes to an observing position. It is also able to do all of that in less than 30 seconds, allowing for an extremely quick turnaround in order to observe these transient phenomena of interest.
Once the telescopes are positioned, G-TeCS is also able to collect and analyze images. It compares any images it captures with a calibration image, and uses a type of artificial intelligence known as a “convolutional neural network” to assign a score to the likelihood that it detected a signal of interest. As with so much AI assisted research, humans are the last part in the analysis chain. Researchers use a tool called GOTO Marshall to individually validate high interest targets, and can also schedule follow-up observations with other telescopes in the area.
All of this software system is controlled remotely at the University of Warwick, who leads the GOTO project, which includes 9 other institutions from the UK, Australia, Thailand, Spain, and Finland. As they continue to implement their planned improvements, and data continues to come in, we’ll start to be able to visualize the catastrophic events associated with some of the most violent phenomena in the universe.
Learn More:
arXiv: The Gravitational-wave Optical Transient Observer (GOTO)
University of Warwick: Gravitational wave Optical Transient Observatory
Lead Image Credit: The prototype GOTO telescope. Credit: GOTO Project
We have been spoiled over recent years with first the Hubble Space Telescope (HST) and…
The Breakthrough Starshot program aims to cross the immense distances to the nearest star in…
The Earth has always been bombarded with rocks from space. It’s true to say though…
RALEIGH, N.C. — Particle physicist Hitoshi Murayama admits that he used to worry about being…
We are all familiar with the atmosphere of the Earth and part of this, the…
One explanation for dark matter is that it's made out of primordial black holes, formed…