Categories: AstronomyCosmology

New Supercomputer Simulations Will Help pin Down Inflation

In the very earliest moments of the big bang, the universe experienced a period of rapid expansion known as inflation. That event planted the seeds that would eventually become galaxies and clusters. And now, a recent set of simulations is able to show us how that connection worked.

When our universe was less than a second old, it grew more than a trillion, trillion times in size in less than a trillionth of a trillionth of a microsecond. That landmark event, known as inflation, is largely a mystery to modern physics. Besides being pretty sure that it happened, we don’t know what triggered it, what made it last as long as it did, or how it ended.

But the effects of inflation can be seen all the way to the present day, more than 13 billion years later. That’s because inflation turned microscopic quantum fluctuations into something a little larger. Over time, those tiny little differences in density grew and grew, eventually becoming the starting points for stars, galaxies, and the largest structures in the universe.

So by mapping the arrangement of galaxies in the universe, we can see the fingerprint of inflation. But connecting modern-day maps to that early epoch is a challenging task, because of the incredible amount of time and all the complicated physics (unrelated to inflation itself) that have intervened in that time. Most importantly, the gravitational interactions between galaxies has disguised a lot of the original imprint of inflation.

To solve this, scientists used the ATERUI II supercomputer at the National Astronomical Observatory of Japan (NAOJ) to perform a series of complex computer simulations. These simulations attempted to reconstruct the process of inflation by, essentially, “rewinding” the evolution of galaxies.

If you know how galaxies move over time, then you can use that knowledge to guess as to where they were in the past. This process erases some of the interactions that have obscured the effects of primordial inflation.

The researchers created 4,000 simulated universes and compared them to galaxy surveys. They could then pick out the model of inflation that best explained the data. This method isn’t perfect, of course, but it is powerful.

“We found that this method is very effective,” said team leader Masato Shirasaki, an assistant professor at NAOJ and the Institute of Statistical Mathematics. “Using this method, we can verify of the inflation theories with roughly one tenth the amount of data. This method can shorten the required observing time in upcoming galaxy survey missions such as SuMIRe by NAOJ’s Subaru Telescope.”

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

5 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

7 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

19 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

20 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

21 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

23 hours ago