Categories: Astronomy

When Stars Get Too Close to Each Other, They Cast Out Interstellar Comets and Asteroids

In October 2017, humanity caught its first-ever glimpse of an interstellar object – a visitor from beyond our solar system – passing nearby the Sun. We named it Oumuamua, and its unusual properties fascinated and confounded astronomers. Less than two years later, amateur astronomer Gennady Borisov found a second interstellar object: a comet-like body that began to disintegrate as it passed within 2 AU of the Sun (1 AU equals the distance from Earth to the Sun). Where do these interstellar objects come from? How common are they? With a sample size of just two, it’s difficult to make any generalizations just yet. On the other hand, given what we know about star formation, we can begin to make some inferences about the likely origins of these objects, and what we are likely to see of them in the future.

One of the most likely culprits for ejecting asteroids and comets into interstellar space is close encounters between stars. Four researchers studying this question – Susanne Pfalzner, Luis Aizpuru Vargas, Asmita Bhandare, and Dimitri Veras – released a paper last week examining this process.

When stars get too close to each other, they can cause gravitational interactions that wreak havoc on the stars’ orbiting bodies. As the researchers explain, “Such close flybys happen most frequently during the first 10 Million years of a star’s life.” This is because stars tend to form close together in clusters, born collectively from enormous clouds of gas. During this turbulent early period of their life, stars can approach each other and rip tiny planetesimals out into deep space in the process, leaving them alone as wayward travelers in the night. Not all stars experience such violent interactions. It tends to be a small subset of stars that eject most of the interstellar objects.

When these interactions do occur, the mass of the stars involved matters a great deal. High mass stars which come within 250AU of each other can rip away so much material that more than half of a system’s planetesimals might be turned into interstellar objects, leaving little behind in orbit around the parent star.

The second interstellar object ever discovered passing through our solar system, 2I Borisov, in October 2019. Image Credit: NASA, ESA, and D. Jewitt (UCLA).

The researchers were also able to predict the expected velocities of ejected objects, and, perhaps most interestingly, their composition. Asteroids tend to form closer to their star, with comet-like objects further out. The comets are therefore more susceptible to being ejected, meaning that most interstellar objects likely look more like Borisov, and less like Oumuamua, which had asteroid-like properties.

There are other processes that can eject planetesimals too. Interactions with giant planets like Jupiter, for example, can throw asteroids out into deep space. We might be able to tell which method ejected an individual object by its speed – planetary scattering tends to create faster-moving objects, while stellar interactions produce slower-moving ones.

Oumuamua was very slow, making stellar interaction a likely source. Planetary scattering, on the other hand, can’t be ruled out for the faster-moving Borisov.

The paper also produced a fascinating result concerning our own solar system: it probably ejected about 2-3 Earth masses worth of material out into deep space during the formation of our star. That means that while we sit waiting for the next Oumuamua or Borisov to visit us, our own interstellar comets and asteroids are out there now, visiting alien worlds and distant suns.

Further Reading: Susanne Pfalzner, Luis L. Aizpuru Vargas, Asmita Bhandare, and Dimitri Veras. “Significant interstellar object production by close stellar flybys.” ArXiv Preprint.

Featured Image: Artist’s impression of Oumumua. Credit: ESO/M. Kornmesser

Scott Alan Johnston

Scott Alan Johnston is a science writer/editor at the Perimeter Institute for Theoretical Physics, a contributor at Universe Today, and a historian of science. He is the author of "The Clocks are Telling Lies," which tells the story of the early days of global timekeeping, when 19th-century astronomers and engineers struggled to organize time in a newly interconnected world. You can follow Scott on Twitter @ScottyJ_PhD

Recent Posts

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

2 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

14 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

14 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

16 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

18 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

21 hours ago