Categories: Black Holes

Space Telescopes Could Provide Next-Level Images of Black Hole Event Horizons

Back in 2019, the world was treated to the first ever image of a black hole, which was originally captured in 2017.  The feat was widely heralded as a leap forward for astrophysics, supporting Einstein’s Theory of Relativity.  Now a team led by the Radboud University proposes sending instruments into space to estimate black hole parameters more accurately by an order of magnitude.  The newest paper, led by Dr. Volodymyr Kudriashov, translates science goals into technical requirements and focuses on the instrumentation needed for the Event Horizon Imager, as the mission is called.

The paper mainly considers logging data from the “easiest to capture” black holes, though it is possible to image other objects and to make black hole movies where observers could see black holes in action.  As a proof of concept, the team pointed and took some preliminary images of the “easiest” black holes and confirmed that image reconstructions would work for higher resolutions.  Now, the project faces the biggest obstacle of most space missions – getting launched, preferably on a budget.

Mode of how the EHI could fit in to an Arianne 6 rocket, with room to spare.
Credit: Kudriashov et al.

The mission itself calls for two separate satellites orbiting in mid-Earth orbit about 26,000 km (16,000 m) from each other.  Data links over such long distances may probe a problem though, so the team developed a system for handling usual “raw’’ data.  This novel system will leverage on both on-board GPS and a laser between telescope-satellites and will allow the data rate back to Earth to be tiny.  Utilizing optical inter-satellite communication seems feasible if the system avoids one potential hazard of such optical systems – being blocked by clouds.  Luckily, the team found plenty of relevant space inter-satellite laser technologies for ranging and communication that they could utilize, including some that area already flying in space now.

Such a system would be worth it if it captures data that can be used to compare the competing gravitational theories that have divided the physics community for decades.  Though there are no concrete plans to launch a system similar to the EHI any time soon, imaging black holes from space is at the recommendations of Voyage 2050 ESA`s Senior Committee, so such a system is already on the long term roadmap of the astronomical community.

UT video discussing the first image of a black hole.

Learn more:

Lead Image:
M87’s black hole with magnetic field lines.
Credit: EHT Collaboration

Andy Tomaswick

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

3 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

5 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

18 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

18 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

20 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

22 hours ago