Categories: Solar System

Fantastic Visualization Shows What Would Happen if you Dropped a Ball Across the Solar System

Summertime means it’s time to play ball! But what would it be like to play ball on various locations across our Solar System? Planetary scientist Dr. James O’Donoghue has put together a fun animation of how quickly an object falls on to the surfaces of places like the Sun, Earth, Ceres, Jupiter, the Moon, and Pluto.

The animation shows a ball dropping from 1 kilometer to the surface of each object, assuming no air resistance. You can compare, for example, that it takes 2.7 seconds for a ball to drop that distance on the Sun, while it takes 14.3 seconds Earth.  

“This should give an idea for the pull you would feel on each object,” O’Donoghue said.

But what about the pull of gravity on the big planets vs. Earth? Interestingly enough, it takes and 13.8 seconds for the ball to drop on Saturn, and 15 seconds on Uranus.

“It might be surprising to see large planets have a pull comparable to smaller ones at the surface,” O’Donoghue said on Twitter. “For example Uranus pulls the ball down slower than at Earth! Why? Because the low average density of Uranus puts the surface far away from the majority of the mass. Similarly, Mars is nearly twice the mass of Mercury, but you can see the surface gravity is actually the same… this indicates that Mercury is much denser than Mars.”

Ceres comes in at the pokiest place to play ball, with a ball dropping 1km in 84.3 seconds.

O’Donoghue, along with input from astronomer Rami Mandow, used a NASA planetary fact sheet for reference to create the video.

O’Donoghue also referenced one of the most famous gravity experiments ever conducted, the one by astronaut Dave Scott on the Moon:

O’Donoghue has a number of great videos on his YouTube channel, including a visualization of the velocities required to escape the pull of gravity from various bodies in the Solar System.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

13 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

14 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

3 days ago