Categories: Astronomy

Astronomy Jargon 101: Hertzsprung–Russell (HR) diagram

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll soon have a better way to categorize today’s topic: the Hertzsprung–Russell diagram!

In the early 1900’s astronomy was in a bit of a mess (NB it’s still in a mess, but a completely different one). Astronomers had figured out the trick of spectroscopy, and were beginning some seriously large-scale surveys of our galactic neighborhood.

Those astronomers surveyed all sorts of amazing stars. Giant red ones. Giant blue ones. Small red ones. Medium white ones. The stars they saw had different colors, different temperatures, different specta, and different sizes.

And none of it made any sense.

Why were some stars red and big, while others were blue and big? And what about the small red ones? There needed to be some sort of classification system; some way to organize this giant flood of information. Astronomers had proposed various ideas, like the suggestion that stars start out big and hot and shrink as they age, but that didn’t fit all the data.

Around 1910, the astronomers Ejnar Hertzsprung and Henry Norris Russell, working independently, both came up with the same solution. They found that if they arranged stars according to their temperature and their luminosity, a remarkable pattern popped out.

This Hertzsprung-Russell diagram (more commonly called the “HR” diagram) showed that stars didn’t have just any combination of luminosity and temperature. Instead, stars tended to cluster along a narrow band, which came to be called the Main Sequence. Bluer stars tended to be brighter stars. Redder stars tended to be dimmer. And white stars tended to be in the middle.

In addition to the Main Sequence, there was a small clump of dim, white/blue stars (the white dwarfs), and bright, red stars (the red giants). And that…was it.

The Hertzsprung-Russell diagram may not seem like a big deal, but it was a total revolution in our understanding of stellar life cycles. It made sense of all the data. It crafted order out of the chaos. It showed that stars in our universe weren’t just random – there was a central organizing principle to the observable properties of stars.

If you wanted to develop a theory of stellar evolution, then you had to confront the Hertzsprung-Russell diagram. Your model of how stars worked had to explain it. Without the Hertzsprung-Russell diagram, we wouldn’t have known about this relationship between luminosity and temperature, and we would have had to work a lot harder to pin down the physics of stars.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

11 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

12 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

13 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

15 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

18 hours ago

How Scientists Repurposed a Camera on ESA’s Mars Express Mission

A camera aboard the Mars Express orbiter finds a new lease on life. Sometimes, limitations…

21 hours ago