Categories: AstronomyMissions

Rare Binary Pulsars Provide High Energy Physics Lab

For the first time, a spacecraft has detected signals from both stars of a binary pulsar system in X-rays. XMM-Newton is watching both stars radiate pulsating X-rays, providing scientist with the perfect laboratory for high energy physics and a never-ending source of intriguing physical problems. The binary pulsar PSR J0737-3039 was first spotted by astronomers in 2003 in radio wavelengths, but now X-rays can be used to investigate this system in greater detail.

Binary pulsars are extremely rare. Each star of the closely-packed system is a dense neutron star, spinning extremely fast, radiating X-rays in pulses. One pulsar (B) rotates slowly, what scientists call a ‘lazy’ neutron star, while orbiting a faster and more energetic companion (pulsar A).

Each pulsar or neutron star once existed as a massive star. “These stars are so dense that one cup of neutron star-stuff would outweigh Mt. Everest,” says Alberto Pellizzoni, who has been studying this system. “Add to that the fact that the two stars are orbiting really close to each other, separated by only 3 light-seconds, about three times the distance between Earth and the Moon.”

Pellizzoni added, “One cup of neutron star-stuff would outweigh Mt. Everest. Add to that the fact that they’re orbiting really close, separated by only about three times the distance between Earth and the Moon.”

Pulsar B is an oddity, in that it is very different from a ‘normal’ pulsar. Additionally, the amount of X-rays coming from the system is greater that the scientists predicted. But how the two pulsars work together is still not understood.

“One possible solution for the mystery could be mutual interaction between the two stars, where the lazy star derives energy from the other,” says Pellizzoni.

Watch video of how the two pulsars may interact

The fundamental physical processes involved in these extreme interactions are a matter of debate among theoretical physicists. But now, with XMM-Newton’s observations, scientists have gained new insight, providing a new experimental setting for them. In X-rays, it will be possible to study the subsurface and magnetospheres of the stars as well as the interaction between the two in that close, heated environment.

This system also provides the study of strong-field gravity, given how close and dense the two stars are. Future tests of general relativity by radio observations of this system will supersede the best Solar System tests available. It is also a unique laboratory for studies in several other fields, ranging from the equation of state of super-dense matter to magneto-hydro dynamics.

Original News Source: ESA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

57 minutes ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

2 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago