Categories: Star Formation

Are the Burned-Out Remnants of the First Stars all Around us?

The first stars to appear in the universe lived fast and died young. Today, none of them likely remain. But their remnants, the black holes and neutron stars, might still wander around the cosmos. Unfortunately, they’re extremely difficult to detect unless they merge, and according to new research the only way to see them would be to conduct an unprecedented survey of the local volume of the universe.

The first stars were probably huge, up to one or two hundred times the mass of the sun. With that kind of incredible bulk, their fusion reactions burned at a furious pace, shortening their lives to a mere few million years. Shortly after they arrived on the comic scene, they departed, setting the stage for new generations of smaller, longer-lived descendents.

That means that it’s highly unlikely for us to observe any of these first stars today. But when giant stars die, they leave behind remnants like black holes and neutron stars. Any of those dense objects that we observe today might be remnants from that bygone era, but it’s impossible to tell unless we can directly observe their chemical nature: the first stars were almost purely hydrogen and helium, with little to no pollution from heavier elements.

These remnants only become luminous – and hence detectable – when they get extremely bright. This can happen when they get too close to another star, pulling material from it and flaring in X-rays, or when they get torn apart during a tidal disruption event.

Recently, a team of astrophysicists investigated just how rare these events might be, with their results appearing on the preprint journal arXiv.

They found depressingly low odds. On average, the Milky Way is likely to only host less than 0.3 X-ray binary flares, and less than a millionth tidal disruption events, from remnants of the first stars. That means we would need to study thousands of galaxies to have a chance of observing a single flare, and millions of galaxies to catch a tidal disruption event.

However, not all hope is lost. Next generation X-ray telescopes, like ATHENA and LYNX, are in the design stage. They might have the capabilities to peer deep into into the local volume of the universe, gathering enough data to witness one of these active remnants. But it would take a monumental, and costly, survey to do it.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

18 minutes ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

4 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

8 hours ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

23 hours ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

1 day ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

1 day ago