Categories: Astronomy

Astronomy Jargon 101: Type-II Supernovae

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll have a blast learning about today’s topic: Type-II Supernovae!

When stars like our sun die, they turn themselves inside out in a gory, grisly display of fundamental elements. Despite the carnage it winds up being a pretty sight, creating the beautiful planetary nebulae.

But for stars bigger than the sun, they go out with a bang.

The problem is fusion. That’s how stars get their energy. Right now our sun is burning through several mountains’ worth of hydrogen every single second, leaving behind helium. As it ages, it will turn to burning that helium, producing carbon and oxygen. Not giving up quite yet, it will fuse that carbon and oxygen into silicon, magnesium, and iron.

And it turns out that iron is the end of the fusion line.

Once iron appears in the core of a giant star, you’re only minutes away from a Type-II (also known as “core collapse”, but that’s giving away the ending) supernova.

With each successive generation of heavier elements, the fusion rates happen faster and faster. That’s because the heavier elements yield less energy than their lighter cousins, and so the crushing gravity of the star’s own weight cranks up the intensity.

But fusing iron doesn’t release energy. It takes energy.

As soon as the iron core develops, the rug has been pulled out from underneath the star. All the surrounding material crushes into that tiny core at a healthy fraction of the speed of light. That material slams into the core with such a force that electrons get shoved inside protons, turning the whole core of iron into a giant ball of neutrons.

That ball of neutrons (properly called a “proto-neutron star”) can, temporarily at least, resist the continued collapse. So all that material bounces off the core, triggering a shockwave.

And a big, big boom.

A Type-II supernova.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

15 minutes ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

5 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

7 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

20 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

20 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

21 hours ago