Mars 2020

Perseverance Begins the Next Phase of its Mission, Studying an Ancient River Bed on Mars

On February 18, 2021, NASA’s Perseverance (Percy) Rover successfully landed in the dried-up lakebed known as Jezero Crater on Mars, beaming back images and video of its descent and landing to millions of space fans living on the planet that built and launched this incredible robotic explorer. With this landing came enormous excitement for a new era of robotic exploration of the Red Planet as we slowly continue to unlock the secrets of Mars and its ancient past, to include (hopefully) finding evidence of past life.

This high-resolution still image is part of a video taken by several cameras as NASA’s Perseverance rover touched down on Mars on Feb. 18, 2021. A camera aboard the descent stage captured this shot. (Credit: NASA JPL)

While Mars might have once featured a lush and habitable environment, today it’s nothing more than a cold, dead world. With an average surface temperature of -63°C (-82°F) and an atmosphere consisting of 95% carbon dioxide and pressures that are 100 times less than Earth’s, the Mars of today is incredibly inhospitable for life as we know it here on our blue marble in space. This extremely harsh environment hasn’t stopped us from trying to unlock Mars’ secrets and learn more about how it came to be what it is today, with Percy working literally tirelessly to continue this incredible scientific journey.

During its venture on Mars, Percy collected eight rock-core samples during its first science campaign and completed a record-breaking 31-Martian-day (sol) trek across 5 kilometers (3 miles) of Mars. It ultimately arrived at the doorstep of Jezero’s ancient river delta on April 13, 2022. This delta is significant as it will not only serve as Percy’s staging area for its second science campaign, known as the “Delta Front Campaign”, but is also believed to be the mission’s best bet in finding preserved remnants of ancient microbial life.

The delta, a massive fan-shaped collection of rocks and sediment at the western edge of Jezero Crater, formed at the convergence of a Martian river and a crater lake billions of years ago. Its exploration tops the Perseverance science team’s wish list because all the fine-grained sediment deposited at its base long ago is the mission’s best bet for finding the preserved remnants of ancient microbial life.

“We’ve been eyeing the delta from a distance for more than a year while we explored the crater floor,” said Ken Farley, Perseverance project scientist at Caltech in Pasadena. “At the end of our fast traverse, we are finally able to get close to it, obtaining images of ever-greater detail revealing where we can best explore these important rocks.” Having officially kicked off on April 18, 2022, the Delta Front Campaign will instruct Percy to drive to the southwest and then to the west. The goal of this first leg will be to scout the best route to ascend the delta, which rises about 40 meters (130 feet) above the crater floor.

Map showing Perseverance’s landing site at the Jezero Crater on Mars. (Credit: NASA)

The Delta Front Campaign is scheduled to take about half an Earth year, during which time Percy will be conducting detailed science investigations while on the way up the delta, and on the way back down, as well. These investigations include taking rock core samples, and Percy is expected to collect around eight samples during this time.

“The delta is why Perseverance was sent to Jezero Crater: It has so many interesting features,” said Farley. “We will look for signs of ancient life in the rocks at the base of the delta, rocks that we think were once mud on the bottom of ‘Lake Jezero.’ Higher up the delta, we can look at sand and rock fragments that came from upstream, perhaps from miles away. These are locations the rover will never visit. We can take advantage of an ancient Martian river that brought the planet’s geological secrets to us.”

Jezero Crater

As stated, Jezero Crater on Mars is a dried-up lakebed believed to once be the home of a massive amount of liquid water deep in Mars’ ancient past. The crater itself has a diameter of 45 kilometers (25 miles) and is located in the Syrtis Major quadrangle. Aside from the delta that is located in the western part of Jezero, the crater also displays point bars and inverted channels, other evidence that liquid water once existed there long ago.

Artist’s concept of Jezero Crater filled with a lake. (Credit: NASA JPL)

Ancient Past: A Wetter, Warmer Mars

When Mars first formed billions of years ago, its interior was searing with heat and a spinning outer core. This spinning outer core gave Mars a magnetic field, shielding it from the intense cosmic radiation from the Sun. This magnetic field allowed auroras to dance across the night sky in breathtaking fashion, much like what we see near the poles on present-day Earth. This interior heat also fueled the many volcanoes spread across the surface to replenish the atmosphere just like what happens on present-day Earth, giving Mars a much thicker atmosphere and allowing liquid water to cascade across its surface, carving out channels and streams, and even filling many craters also strewn across its vast surface. Alas, with Mars being half the size of Earth, physics intervened, and the Red Planet slowly died from the inside out due to the loss of heat. When you put potatoes in an oven and remove them some time later, the smaller potatoes cool off much faster than the larger ones, and this cooling was the unfortunate fate for Mars. With the loss of heat, the volcanoes ceased to replenish the atmosphere and the magnetic field slowly faded away. Losing these two key atmospheric components caused the once cascading liquid water to slowly evaporate, leaving us with the cold, dead world we see today.

Artist’s impression of an ancient, watery Mars. (Credit: NASA/Goddard Space Flight Center)

What secrets will Percy unlock about the ancient past of Mars? How long was liquid present on the surface, and will this car-sized rover find evidence of past life on the Red Planet? Time will tell, and this is why we science!

As always, keep doing science & keep looking up!

Source: NASA JPL

Lead image: The expanse of Jezero Crater’s river delta is shown in this panorama of 64 stitched-together images taken by the Mastcam-Z system on NASA’s Perseverance Mars rover on April 11, 2022, the 406th Martian day, or sol, of the mission. (Credit: NASA/JPL-Caltech/Arizona State University/Malin Space Science Systems)

Laurence Tognetti

Laurence Tognetti is a six-year USAF Veteran who earned both a BSc and MSc from the School of Earth and Space Exploration at Arizona State University. Laurence is extremely passionate about outer space and science communication, and is the author of “Outer Solar System Moons: Your Personal 3D Journey”.

Recent Posts

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

3 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

7 hours ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

22 hours ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

1 day ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

1 day ago

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

2 days ago