Astronomy

Researchers Create a Plasma Bubble With Lasers That Could Provide Propulsion or an Artificial Magnetosphere

Lasers are useful for a lot of things. They made CDs work (when they were still a thing). They also provide hours of entertainment for cats (and their humans). But they can also create magnetic conditions similar to the surface of the Sun in a lab, according to new research by scientists at Osaka University. And that might help a wide range of other scientific disciplines, ranging from solar astronomy to fusion.

The experiment used a high-power laser, known as Gekko XII, at the Institute of Laser Engineering at Osaka University. Originally designed for fusion experiments, this laser is powerful enough to vaporize a piece of plastic if it is focused on it. Or, more accurately, it is powerful enough to turn it into a plasma.

That is just what the researchers did. They zapped a small piece of plastic with Gekko XII that sat on top of a magnet emitting a weak magnetic field. The laser blast, which only lasted for about 500 picoseconds, created a high-energy plasma that distorts an already weak magnetic field over the sample. That combination of a weak magnetic field and plasma created a situation known as a “pure electron outflow.”  

UT video discussing building an artificial magnetosphere.

This phenomenon is thought to play a significant role in other, much larger astrophysical phenomena, such as solar flares and magnetic storms on the Sun’s surface. In these larger-scale instances, the electron dynamics of the area create what is known as a magnetic reconnection, where the magnetic field of a feature connects back with the base magnetic connection of the body it is emanating from.  

Recreating these features at a small scale in the lab has never been done before, but the researchers at Osaka think that their electron outflow created by the combination of a magnet and the laser-induced plasma might be the closest thing that we will have to being able to study these phenomena on Earth.

Scaling down solar physics level phenomena to a more manageable size is undoubtedly a step in the right direction, but pure electron flow is also helpful in other areas. As mentioned above, Gekko was initially designed to work on inertial confinement fusion, which a better understanding of microscopic level electron dynamics might help to control.

Another UT video discussing artificial magnetospheres.

Overall, the experiment represents steps forward in understanding fundamental physics and applies to much more macroscale phenomena. It shows that lasers if leveraged correctly, are useful for much more than convincing your dog to run into a wall.

Learn More:
Sakai et al – Direct observations of pure electron outflow in magnetic reconnection
Osaka University – Laser creates a miniature magnetosphere
UT – An Absolutely Bonkers Plan to Give Mars an Artificial Magnetosphere
UT – A Magnetic Bubble Could Protect Astronauts From Dangerous Space Radiation

Lead Image:
Depiction of the GEKKO XII experiment.
Credit – Sakai et al / Osaka University

Andy Tomaswick

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

12 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

13 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

3 days ago