Categories: Black Holes

New “Sunglasses” Help Astronomers See Light Near Black Holes

[/caption]
Although we can’t actually see a black hole, we can see the black hole’s effect on nearby matter. But even that is difficult because infrared light from clouds of dust and gas usually pollutes the view. But astronomers have found a way to get a clean view of the disks surrounding black holes by using a polarizing filter in the infrared. This technique works in particular when the region immediately surrounding the black hole emits a small amount of scattered light. Since scattered light is polarized, astronomers can use a filter that works like polarized sunglasses on large telescopes to detect this small amount of scattered light and measure it with unprecedented accuracy. Scientists have theorized these luminous disks existed around black holes, but until now have not been able to observe them.

The United Kingdom Infrared Telescope (UKIRT) on Mauna Kea in Hawaii has such an infrared filter, called a polarimeter (IRPOL). Astronmers have been using UKIRT and IRPOL and other telescopes for many years to search for proof that such a luminous supermassive black hole is accreting materials in a particular form of disk, where the disk shines directly using the gravitational binding energy of the black hole. Theorists have long thought that such disks should exist, and while there is a well-developed theory for it, until now theory and observations have been contradictory.

Dr. Makoto Kishimoto of the Max Planck Institute, principal investigator of this project, says: “After many years of controversy, we finally have very convincing evidence that the expected disk is truly there. However, this doesn’t answer all of our questions. While the theory has now been successfully tested in the outer region of the disk, we have to proceed to develop a better understanding of the regions of the disk closer to the black hole. But the outer disk region is important in itself – our method may provide answers to important questions for the outer boundary of the disk.”

A polarizing filter allows the colors of disk to be seen. Figure by M. Kishimoto, with cloud image by Schartmann

Dr. Robert Antonucci of the University of California at Santa Barbara, a fellow investigator, says: “Our understanding of the physical processes in the disk is still rather poor, but now at least we are confident of the overall picture.”

Astronomers are hoping this new method will provide more information about the disks surrounding black holes in the near future.

Now, next on the agenda should be developing a suitable gravitational wave detector to confirm the existence of black holes!

Original News Source: University of Hawaii

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

8 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

13 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

1 day ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

2 days ago

Webb Confirms a Longstanding Galaxy Model

The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…

3 days ago