It is an exciting time for astronomers and cosmologists. Since the James Webb Space Telescope (JWST), astronomers have been treated to the most vivid and detailed images of the Universe ever taken. Webb‘s powerful infrared imagers, spectrometers, and coronographs will allow for even more in the near future, including everything from surveys of the early Universe to direct imaging studies of exoplanets. Moreover, several next-generation telescopes will become operational in the coming years with 30-meter (~98.5 feet) primary mirrors, adaptive optics, spectrometers, and coronographs.
Even with these impressive instruments, astronomers and cosmologists look forward to an era when even more sophisticated and powerful telescopes are available. For example, Zachary Cordero
of the Massachusetts Institute of Technology (MIT) recently proposed a telescope with a 100-meter (328-foot) primary mirror that would be autonomously constructed in space and bent into shape by electrostatic actuators. His proposal was one of several concepts selected this year by the NASA Innovative Advanced Concepts (NIAC) program for Phase I development.
Corder is the Boeing Career Development Professor in Aeronautics and Astronautics at MIT and a member of the Aerospace Materials and Structures Lab (AMSL) and Small Satellite Center. His research integrates his expertise in processing science, mechanics, and design to develop novel materials and structures for emerging aerospace applications. His proposal is the result of a collaboration with Prof. Jeffrey Lang (from MIT’s Electronics and the Microsystems Technology Laboratories) and a team of three students with the AMSL, including Ph.D. student Harsh Girishbhai Bhundiya.
Their proposed telescope addresses a key issue with space telescopes and other large payloads that are packaged for launch and then deployed in orbit. In short, size and surface precision tradeoffs limit the diameter of deployable space telescopes to the 10s of meters. Consider the recently-launched James Webb Space Telescope (JWST), the largest and most powerful telescope ever sent to space. To fit into its payload fairing (atop an Ariane 5 rocket), the telescope was designed so that it could be folded into a more compact form.
This included its primary mirror, secondary mirror, and sunshield, which all unfolded once the space telescope was in orbit. Meanwhile, the primary mirror (the most complex and powerful ever deployed) measures 6.5 meters (21 feet) in diameter. Its successor, the Large UV/Optical/IR Surveyor (LUVOIR), will have a similar folding assembly and a primary mirror measuring 8 to 15 meters (26.5 to 49 feet) in diameter – depending on the selected design (LUVOIR-A or -B). As Bhundiya explained to Universe Today via email:
“Today, most spacecraft antennas are deployed in orbit (e.g., Northrop Grumman’s Astromesh antenna) and have been optimized to achieve high performance and gain. However, they have limitations: 1) They are passive deployable systems. I.e. once you deploy them you cannot adaptively change the shape of the antenna. 2) They become difficult to slew as their size increases. 3) They exhibit a tradeoff between diameter and precision. I.e. their precision decreases as their size increases, which is a challenge for achieving astronomy and sensing applications that require both large diameters and high precision (e.g. JWST).”
While many in-space construction methods have been proposed to overcome these limitations, detailed analyses of their performance for building precision structures (like large-diameter reflectors) are lacking. For the sake of their proposal, Cordero and his colleagues conducted a quantitative, system-level comparison of materials and processes for in-space manufacturing. Ultimately, they determined that this limitation could be overcome using advanced materials and a novel in-space manufacturing method called Bend-Forming.
This technique, invented by researchers at the AMSL and described in a recent paper co-authored by Bhundiya and Cordero, relies on a combination of Computer Numerical Control (CNC) deformation processing and hierarchical high-performance materials. As Harsh explained it:
“Bend-Forming is a process for fabricating 3D wireframe structures from metal wire feedstock. It works by bending a single strand of wire at specific nodes and with specific angles, and adding joints to the nodes to make a stiff structure. So to fabricate a given structure, you convert it into bending instructions which can be implemented on a machine like a CNC wire bender to fabricate it from a single strand of feedstock. The key application of Bend-Forming is to manufacture the support structure for a large antenna on orbit. The process is well-suited for this application because it is low-power, can fabricate structures with high compaction ratios, and has essentially no size limit.”
In contrast to other in-space assembly and manufacturing approaches, Bend-Forming is low-power and is uniquely enabled by the extremely low-temperature environment of space. In addition, this technique enables smart structures that leverage multifunctional materials to achieve new combinations of size, mass, stiffness, and precision. Additionally, the resulting smart structures leverage multifunctional materials to achieve unprecedented combinations of size, mass, stiffness, and precision, breaking the design paradigms that limit conventional truss or tension-aligned space structures.
In addition to their native precision, Large Bend-Formed structures can use their electrostatic actuators to contour a reflector surface with sub-millimeter precision. This, said Harsh, will increase the precision of their fabricated antenna in orbit:
“The method of active control is called electrostatic actuation and uses forces generated by electrostatic attraction to precisely shape a metallic mesh into a curved shape which acts as the antenna reflector. We do this by applying a voltage between the mesh and a ‘command surface’ which consists of the Bend-Formed support structure and deployable electrodes. By adjusting this voltage, we can precisely shape the reflector surface and achieve a high-gain, parabolic antenna.”
Harsh and his colleagues deduce that this technique will allow for a deployable mirror measuring more than 100 meters (328 ft) in diameter that could achieve a surface precision of 100 m/m and a specific area of more than 10 m2/kg. This capability would surpass existing microwave radiometry technology and could lead to significant improvements in storm forecasts and an improved understanding of atmospheric processes like the hydrologic cycle. This would have significant implications for Earth Observation and exoplanet studies.
The team recently demonstrated a 1-meter (3.3 ft) prototype of an electrostatically-actuated reflector with a Bend-Formed support structure at the 2023 American Institute of Aeronautics and Astronautics (AIAA) SciTech Conference, which ran from January 23rd to 27th in National Harbor, Maryland. With this Phase I NIAC grant, the team plans to mature the technology with the ultimate aim of creating a microwave radiometry reflector.
Looking ahead, the team plans to investigate how Bend-Forming can be used in geostationary orbit (GEO) to create a microwave radiometry reflector with a 15km (9.3 mi) field of view, a ground resolution of 35km (21.75 mi) and a proposed frequency span of 50 to 56 GHz – the super-high and extremely-high frequent range (SHF/EHF). This will enable the telescope to retrieve temperature profiles from exoplanet atmospheres, a key characteristic allowing astrobiologists to measure habitability.
“Our goal with the NIAC now is to work towards implementing our technology of Bend-Forming and electrostatic actuation in space,” said Harsh. “We envision fabricating 100-m diameter antennas in geostationary orbit with have Bend-Formed support structure and electrostatically-actuated reflector surfaces. These antennas will enable a new generation of spacecraft with increased sensing, communication, and power capabilities.”
Further Reading: NASA