Brown Dwarf

Your Oven Gets Hotter Than This Star

Nuclear fusion is what separates stars from planets. Stars are massive enough to fuse hydrogen in their cores, while planets are not. But in between these two categories are brown dwarfs, which are massive enough to experience some nuclear fusion, just not hydrogen. The largest of them are hot and star-like. The smallest of them are barely warm enough to bake a pizza.

The smallest hydrogen-fusing stars are known as red dwarfs. They are known as M-type dwarfs, and their minimum mass is about 78 Jupiter masses. Red dwarfs around this mass are about the size of Jupiter, but with greater density. They are also much hotter, with a surface temperature of around 2,800 K, compared to Jupiter’s chilly 165 K.

Between 65 and 78 Jupiter masses, the central core of a body is enough to fuse lithium. Below 65 Jupiter masses but above about 13 Jupiter masses, there is enough mass to fuse deuterium. Neither of these produces a great deal of heat, so brown dwarfs aren’t bright in the visible spectrum. So astronomers categorize them by their infrared spectrum.

Artist rendering of brown dwarf stars. Credit: NASA/JPL-Caltech

The warmest brown dwarfs are known as L-type, with surface temperatures between 1,300 and 2,000 K. Then there are T-type dwarfs with temperatures between 700 – 1,300 K. and Y dwarfs with temperatures 300 – 700 K. On the coolest end of brown dwarfs, it seems a bit silly to treat them as star-like objects. After all, an object smaller than Jupiter with a surface temperature cooler than a warm summer day hardly seems like a star. So should we really make deuterium fusion a cut-off for brown dwarfs? Why not just call them planets? After all, even a planet like Earth is heated in part by nuclear decay. It’s also difficult to get an accurate mass for small brown dwarfs, making it difficult to determine which side they fall on the mass cutoff for brown dwarfs.

An alternative approach is to look at whether they can be seen at radio wavelengths. True stars emit lots of radio light. They have strong magnetic fields and dense plasmas that make them radio bright. Cool brown dwarfs, on the other hand, don’t emit much radio light. In this respect, they are like large planets, which mostly just emit infrared. There are planets such as Jupiter that emit some radio light due to aurora, but not as an overall body. So what if the cutoff for a star-like body is whether they emit plenty of radio light?

As it turns out, a radio-bright brown dwarf can still be pretty cool. Astronomers have recently observed radio emissions from a brown dwarf with the awkward name WISE J062309.94?045624.6. It’s a T-type brown dwarf with a mass of about 40 Jupiters and a surface temperature of about 700 K, or 425 °C. That’s pretty hot by human standards, but downright cool when compared to the Sun’s 5,700 K.

Astronomers aren’t sure just how such a cool body can generate radio light, but one strong possibility is a combination of a strong magnetic field and fast rotation. This could generate the kind of dynamo effect that would emit bursts of radio light. This is just the first example of a radio-bright ultracool brown dwarf. If we can find other similar stars, we should be able to understand the mechanism behind their radio emissions.

Reference: Rose, Kovi, et al. “Periodic Radio Emission from the T8 Dwarf WISE J062309. 94–045624.6.The Astrophysical Journal Letters 951.2 (2023): L43.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

4 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

6 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

18 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

19 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

20 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

23 hours ago