neutron star

Simulation Perfectly Matches What We See When Neutron Stars Collide

There are many mysteries in the world of astronomy and a fair number relate to the processes during the end of the life of a super massive star. Throw in the complexity of collisions and you have a real head scratching problem on your hands. In 2017 colliding neutron stars were detected and the data has allowed a new simulation to be tested with predictions beautifully matching observation.

Neutron stars are stellar corpses no more than 10km or 20km across. They are thought to form when a supermassive star goes supernova at the end of its life and undergoes gravitational collapse.  The collapse causes the remains to be compressed down to incredibly high densities, of the region 450 million billion kilograms per cubic metre (that’s equivalent to the density of an atomic nucleus). To put this into context, under the gravitational collapse, all the space between the components of atomic nuclei is squeezed out creating a gigantic neutron several kilometres across!

A new supernova in M101. Credit: Craig Stocks

It seems quite a common occurence for neutron stars to orbit in binary systems and as they do, slowly eek away energy in the form of gravity waves. These waves are like those on the ocean instead propagate through the fabric of space-time. Eventually, sufficient energy is lost that the neutron stars collide and it is this that has allowed teams of astronomers to study the processes during some of the most extreme conditions found in the Universe. 

An international team that involved the Max Planck Institute for Gravitational Physics and the University of Potsdam have used a new software tool to simulate the physical processes from neutron star mergers (otherwise known as a kilonova).  The team also utilised X-ray observations, radio signals, nuclear physics calculations and even data from Earth based accelerators and for the first time plugged the whole lot into the simulations. 

On 17 August the LIGO/Virgo team detected two neutron stars colliding in an elliptical galaxy in Hydra. The collision was identiifed from gravitational wave and gamma ray observations and by studying such high energy collisions we can learn more about the formation of heavy elements at extreme pressures and densities far greater than found in atomic nuclei.

Artist’s conception of a neutron star merger. This process also creates heavy elements. Credit: Tohoku University

The results were very promising with the predictions from the model matching observation. Now the team are running further observations with gravitational wave detectors as they hunt down the next neutron star merger to use the tool again and further enhance its model.

Source : The Goldmine of a Neutron Star Collision

Mark Thompson

Recent Posts

The Last Arecibo Message Celebrates the Observatory and One of its Greatest Accomplishments

The Arecibo Message, transmitted on November 16th, 1974, from the Arecibo Observatory, was humanity's first…

3 hours ago

A Nearby Supernova Could Finally Reveal Mark Matter

Despite 90 years of research, the nature and influence of Dark Matter continue to elude…

4 hours ago

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

1 day ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

1 day ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

1 day ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

2 days ago