[/caption]
It’s official, the Large Hadron Collider (LHC) will begin operations in a little over a month. On September 10th, the most sophisticated particle accelerator will go online, injecting the first circulation of accelerated particles. Actual experiments involving collisions will occur once scientists are satisfied the LHC is fully optimized and calibration is complete. The LHC has been undergoing “cool-down” for some time, ensuring the LHC’s eight sectors are approaching the 1.9K (-271°C) operational temperature (that is 1.9 degrees above absolute zero). All going well, on September 10th, the first beam will be accelerated to an energy of 450 GeV (0.45 TeV), the preliminary step on the path to attaining particle energies of 5 TeV, a record breaking target… awesome.
Earlier today, CERN announced that the LHC will be ready by September 10th to attempt to circulate a beam of particles. This news comes as the “cool-down” phase of LHC commissioning reaches a successful conclusion, cooling all eight sectors to 1.9 degrees above absolute zero. To manage temperatures this extreme has been a long and painstaking task, referred to as a “marathon” by the project leader:
“We’re finishing a marathon with a sprint. It’s been a long haul, and we’re all eager to get the LHC research programme underway.” – LHC project leader Lyn Evans.
Now scientists and engineers must synchronize the LHC with the Super Proton Synchrotron (SPS) accelerator, which is the last component in the LHC’s particle injector chain. For the system to work, the LHC and SPS must be synchronized to within a fraction of a nanosecond. This task is expected to begin on August 9th (Saturday). These calibration tasks are expected to continue through August and into the beginning of September, preparing the LHC for its first particle injection on the 10th.
The LHC will accelerate particles to relativistic velocities, accessing energies previously unimaginable. Once the LHC reaches its optimum design specification (possibly by 2010), it will generate beams seven-times more energetic and 30-times more intense than any other particle accelerator on the planet. The accelerator ring lies below the Swiss countryside with a circumference of 27 km (17 miles).
Source: CERN
How do you weigh one of the largest objects in the entire universe? Very carefully,…
Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…
Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…
Some binary stars are unusual. They contain a main sequence star like our Sun, while…
11 million years ago, Mars was a frigid, dry, dead world, just like it is…
Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…