If you explore the night sky it won’t be long before you realise there is a lot of dust and gas up there. The interstellar dust between the stars accounts for 1% of the mass of the interstellar medium but reflects 30% of the starlight in infrared wavelengths. The dust plays a key role in the formation of stars and the evolution of the Galaxy. A team of astronomers have attempted to map the dust out to a distance of 3000 light years and have just released the first 3D map of the dust in our Galaxy.
The scattering and absorption of starlight by dust particles (extinction) allows us to explore dust clouds in three dimensions. It also tends to absorb shorter wavelengths from stars causing the stars obscured by the cloud to appear more red in colour. By analysing this it is possible to estimate the extent of dust extinction along our line of sight. When the distance measurements to the stars are taken into account it is possible to build a 3D map of dust clouds.
In understanding the distribution and collecting data for the model generation, Gaia has been a game changer. Gaia is the European Space Agency astrometry observatory that has been mapping the distances and positions of stars across the Galaxy. Since its launch 10 years ago it has collected data from 1 billion stars, mostly within a few kiloparsecs of the Sun (1 parsec is 3.26 light years). Knowing the position of stars accurately enables the reduction of errors in the dust extinction modelling. The combination of stellar astrometry data, phototometric, extinction and spectroscopic data, now was the perfect time to investigate the three dimensional distribution of dust in the Milky Way.
The study, by lead author Gordian Edenhofer from the Max Planck Institute for Astrophysics was recently published in Astronomy and Astrophysics. The team present a three dimensional dust map that goes further and deeper into space with greater resolution than ever before. The processing technique used enabled the team to investigate dust distribution beyond 1 kiloparsec whilst also resolving nearby dust clouds with parsec scale precision.
They were able to present the map of dust out to a distance of 1.25 kiloparsec in greater resolution than before. This was thanks to their use of distance and extinction estimates from previous studies that had lower uncertainties than other data sets. Their map has an angular resolution of up to 14 arc minutes and parsec-scale distance resolution. It’s always pleasing to find a result that is in agreement with previous studies and existing 3D dust maps. But even more pleasing when it goes further by improving the area of space covered and with a higher spatial resolution than before.
As is often the case – and one of the reasons I love science – the map is publicly available online and can be queried and viewed via a Python package by anyone interested. The team hope that the maps will be used for further studies into the distribution of dust and the nature of the interstellar medium.
Source : A parsec-scale Galactic 3D dust map out to 1.25 kpc from the Sun
One explanation for dark matter is that it's made out of primordial black holes, formed…
The seasonal variations of methane in the Martian atmosphere is an intriguing clue that there…
For decades, astronomers have used powerful instruments to capture images of the cosmos in various…
Although the outer Solar System is mostly empty, there are icy objects drifting within the…
A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…
About 370,000 years after the Big Bang, the Universe had cooled down so light could…