NASA

NASA and Boeing Release New Rendering of their X-66 Sustainable Experimental Airliner

Climate change is arguably the single greatest threat facing the world today. According to the Sixth Assessment Report (AR6) by the UN Intergovernmental Panel on Climate Change (IPCC), average global temperatures are set to increase between 1.5 and 2 °C (2.7 to 3.6 °F) by mid-century. To restrict global temperatures to an increase of 1.5 C and avoid the worst-case scenarios, the nations of the world need to achieve net zero emissions by then. Otherwise, things will get a lot worse before they get better, assuming they ever do.

This means transitioning to cleaner methods in terms of energy, transportation, and aviation. To meet our climate commitments, the aviation industry is developing technology to significantly reduce air travel’s carbon footprint. To help meet this goal, NASA and Boeing have come together to create the X-66 Sustainable Experimental Airliner, the first experimental plane specifically focused on helping the U.S. achieve net-zero aviation. Last week, NASA released a new rendering of the concept, giving the public an updated look at the future of air travel.

This configuration is identical to the one unveiled by NASA and Boeing at the Experimental Aviation Association‘s (EAA) AirVenture Oshkosh airshow last year. As you can see from the renderings (above and below), the design features the Transonic Truss-Braced Wing concept. Developed by Boeing, this design features extra-long, thin wings stabilized by diagonal struts. This configuration is based on “Subsonic Ultra-Green Aircraft Reach (SUGAR)” research, a series of studies that began in 2011 to evaluate the benefits of truss-bracing and hybrid electric technologies.

The X-66A is the X-plane specifically aimed at helping the United States achieve the goal of net-zero greenhouse gas emissions by 2050. Credits: NASA

Combined with an advanced propulsion system, a sophisticated systems architecture, and advanced materials, this configuration could reduce fuel consumption and the resulting emissions by up to 30% (compared to top-of-the-line commercial aircraft). Development of the X-66 began in early 2019 through the Sustainable Flight Demonstrator (SFD) project, which is an integral part of NASA’s Sustainable Flight National Partnership (SFNP) – where NASA Aeronautics partners with industry, academia, and other agencies to accomplish the goal of net-zero aviation by 2050.

To build the X-66A, Boeing has been working with NASA to modify a McDonnell Douglas MD-90 single-aisle passenger aircraft. Modifications include a shortened fuselage and the replacement of its wings with the longer, thinner truss-braced variant. The engines have also been relocated from the tail section to under the wings and replaced with gas-electric models. Boeing transported the MD-90 aircraft to its facility in Palmdale, California, in August of 2023 and has since removed its engines and completed the 3-meter (10-foot) model wing they will use for aerodynamic testing.

The project’s ultimate goal is to inform a new generation of more sustainable, single-aisle aircraft, which account for the largest share of air travel worldwide. The program is also part of the U.S. Aviation Climate Action Plan, which seeks to not only meet the nation’s ambitious climate goals but also to improve the quality of life for those living near airports and under flight paths through reductions in noise and pollutants. As NASA Administrator Bill Nelson remarked in a press statement last year:

“At NASA, our eyes are not just focused on stars but also fixated on the sky. The Sustainable Flight Demonstrator builds on NASA’s world-leading efforts in aeronautics as well [as] climate. The X-66A will help shape the future of aviation, a new era where aircraft are greener, cleaner, and quieter, and create new possibilities for the flying public and American industry alike.”

Further Reading: NASA

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

18 hours ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

1 day ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago

Archaeology On Mars: Preserving Artifacts of Our Expansion Into the Solar System

In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…

2 days ago

Building the Black Hole Family Tree

Many of the black holes astronomers observe are the result of mergers from less massive…

2 days ago