Astronomy

What's the Earliest the Moon Could Have Formed?

Astronomers are pretty sure they know where the Moon came from. In the early Solar System, a Mars-sized object dubbed Theia smashed into Earth. This cataclysmic collision knocked a huge mass of material into orbit, which coalesced and cooled into the Moon. But establishing exactly when this occurred is a difficult task. At the 55th annual Lunar and Planetary Science Conference (LPSC 55) last month in The Woodlands, Texas, researchers proposed a new timeline of events that moves the giant impact earlier than previous predictions, at just 50 million years after the formation of the Solar System.

Dating the giant impact event is challenging because the existing evidence is conflicting, telling stories that don’t line up.

One line of evidence is derived from planetary orbits. The most likely cause of the impact is an instability in Jupiter’s orbit, which would have thrown objects like Theia into Earth’s path within the first 100 million years of the Solar System. If that orbital instability happened any later, the paths of the inner planets would have been disrupted, and Jupiter’s trojan asteroids, like binary pair Patroclus and Menoetius, (which NASA’s Lucy spacecraft plans to visit in 2033) would not remain where we see them today.

The best estimate based on these orbital observations places the impact between 37-62 million years after the formation of the Solar System. The Moon, researchers believe, would have cooled from a lake of magma into a solid surface within about 10 million years after impact.

Geological evidence, however, seems to be telling a different story. The earliest known moon rocks formed much later, appearing to have crystalized from magma at about 208 million years. Rocks on Earth, similarly, seem to have formed into a proper crust at about 218 million years.

A third dating scheme, done by measuring the decay of the element Hafnium into Tungsten, pushes the collision date early again, suggesting the Moon’s core formed at about 50 million years.

Any explanation for lunar formation needs to account for all of these evidence types.

A 2022 simulation of the giant impact that created the Moon. NASA / Durham University / Jacob Kegerreis.

The scenario proposed at LPSC 55 does just that. They suggest an early collision around 50 million years, followed by a 10 million-year-long period of cooling. But the Moon then went through a cycle of reheating before finally cooling again at the 200-million-year mark.

That reheating process is the key to this theory, and if it is correct, it would have been caused by tidal forces. The Moon’s orbit, according to this theory, was not yet stable around Earth, and its inclination and eccentricity increased in the years following impact, squeezing and stretching the Moon and liquifying it. These same tidal processes occur on other moons today: around Jupiter, for example, we see them creating volcanoes on Io and liquid oceans on Europa.

The cooling process was also likely slowed by violent secondary impacts, as leftover material from the initial impact slammed into the Moon over millions of years.

The team also added one new piece of evidence that strengthens the case for an early giant impact around 50 million years. Similar to the Hafnium-Tungsten decay method, the team measured the decay of earthly Rubidium sources into Strontium, giving an independent estimate supporting the early date.

This research was carried out by Steven. J. Desch of Arizona State University and A. P. Jackson of Towson University.

Scott Alan Johnston

Scott Alan Johnston is a science writer/editor at the Perimeter Institute for Theoretical Physics, a contributor at Universe Today, and a historian of science. He is the author of "The Clocks are Telling Lies," which tells the story of the early days of global timekeeping, when 19th-century astronomers and engineers struggled to organize time in a newly interconnected world. You can follow Scott on Twitter @ScottyJ_PhD

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

15 hours ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

19 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

23 hours ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

2 days ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

2 days ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 days ago