Astronauts on board the International Space Station are often visited by supply ships from Earth with food among other things. Take a trip to Mars or other and the distances are much greater making it impractical to send fresh supplies. The prepackaged food used by NASA loses nutritional value over time so NASA is looking at ways astronauts can produce nutrients. They are exploring genetic engineering techniques that can create microbes with minimal resource usage.
Many of us take food and eating for granted. The food we can enjoy is usually flavoursome and the textures varied. Astronauts travelling through space generally rely upon pre-packaged food and often this can lack the taste and textures we usually enjoy. Lots of research has gone into developing a more pleasurable dining experience for astronauts but this has usually concentrated on short duration trips.
During longer term missions, astronauts will have to grow their own food. Not only due to the nutritional issues that form the purpose of this article but carrying prepackaged food for flights that last many years becomes a logistic challenge and a launch overhead. To address the loss of nutritional values, the Ames Research Centre’s Space Biosciences Division has launched its BioNutrients project to enable future space travellers to grow their own supplements.
The team has announced they has come up with a solution, thanks to the wonders of genetic engineering. The approach that the team has developed involves microbial based food (similar to yeast) that can produce nutrients and compounds with small amounts of resources.
The secret is to store dried microbes and take food grade bioreactors along on the trip. Until now I never knew what a bioreactor was nor that they even existed. I live in the world of physics and astrophysics so this concept intrigued me. Turns out that a bioreactor does just what it says. It is a container of some form, often made from steel inside which, a biologically active environment can be maintained. Often chemical processes are carried out inside which involve organisms undergoing either aerobic or anaerobic processes. They are often used to grow cells or tissues and it is within these that NASA pins their hopes on cultivating food in space.
Even years after departure, the dried out microbes can be rehydrated many years later and cultured inside the bioreactor, creating the nutrients astronauts need. To date, the team has managed to produce carotenoids (a pigment found in nature) which are used for antioxidants, follistatin for muscle loss and yogurt and kefir to keep the gut in good health. The real challenge though is making food that the astronauts will want to eat.
Source : BioNutrients Flight Experiments