Back in the year 2000, Epsilon Eridani b was discovered. It is a Jupiter-like exoplanet 10.5 light years away but it has taken decades of observations to learn more about the planet. One thing that remains a mystery is it’s orbit which, until recently has been unknown. There has never been a direct image of the planet either, so now, it’s the turn of JWST to see what it can do.
The concept of exoplanets has been around for a few decades now but the first confirmed discovery occurred in 1992. Astronomers at the Arecibo Observatory discovered a number of Earth-mass planets orbiting around the pulsar PSR B1257+12. Since then, over 5,000 planets have been discovered around other star systems. Astronomers use a number of Studying them once they have been confirmed requires more direct study.
One such exoplanet is known as Epsilon Eridani b which also goes by the name AEgir. Exoplanets are named after their host star (in this case Epsilon Eridani) and the letter ‘b’ designates that it was the first exoplanet discovered around that star. The next to be discovered would be ‘c’ and so on although in the case of Epsilon Eridani it is the only planet. It is thought to orbit around the star at a distance of 3.5 astronomical units (where 1 AU is the average distance between the Sun and Earth) and takes about 7.6 years to complete one orbit.
One area of exoplanet study that has been lacking over recent years is the study of the surface and atmospheric conditions, in particular a study into their potential habitability. Cold exoplanets seem to have received the least study due to their faint appearance in the mid-infrared wavelength. Due to the properties of these cold planets, direct imaging techniques are required and must employ high contrast processes. To date, no instrument has been capable of delivering.
The crux of the challenge is that the cold exoplanets have no intrinsic energy source and only re-use the radiation from the host star. Their luminosity is based upon their size and distance from host star but usually the radiation is at the same wavelength as the emission from the star. To address this challenge, a paper has been published in ‘Astronomy & Astrophysics’ journal by a team led by C. Tschudi from the Institute for Particle Physics and Astrophysics in Switzerland.
The paper provides an insight into high contrast observations of Epsilon Eridani taken in 20198 and 2020 using the VLT (Very Large Telescope). Using the SPHERE instrument (Spectro-Polarimetric High-contrast Exoplanet Research) as part of the ongoing RefPlanets programme, the team were able to use polarising technology to search for signals from the planet.
Unfortunately the team were unable to successfully detect Epsilon Eridani b despite a total exposure time of 38.5 hours spread over 12 nights. This was however, useful at understanding the limitations of the instrumentation. What next then? Well it looks like we have to wait for a next generation of infrared sensitive instruments to peer deeper into the system. The James Webb telescope is a fine example of such a device and, once it turns its sights onto Epsilon Eridani maybe the mysteries will finally be resolved.
Source : SPHERE RefPlanets: Search for ? Eridani b and warm dust
Theoretically a neutron star could have less mass than a white dwarf. If these light…
The James Webb Space Telescope (JWST) was specifically intended to address some of the greatest…
The James Webb Space Telescope was designed and built to study the early universe, and…
Titan is one of the solar system's most fascinating worlds for several reasons. It has…
Catching the best sky watching events for the coming year 2025. Comet C/2023 A3 Tsuchinshan-ATLAS…
For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…