Europa has always held a fascination to me. I think it’s the concept of a world with a sub-surface ocean and the possibility of life that has inspired me and many others. In September 2022, NASAs Juno spacecraft made a flyby, coming within 355 kilometres of the surface. Since the encounter, scientists have been exploring the images and have identified regions where brine may have bubbled to the surface. Other images revealed possible, previously unidentified steep-walled depressions up to 50km wide, this could be caused by a free-floating ocean!
Juno was launched to Jupiter on 5 August 2011. It took off from the Cape Canaveral site on board an Atlas V rocket and travelled around 3 billion kilometres. It arrived at Jupiter on 4 July 2016 and in September 2022 made its closest flyby of Europa. The frozen world is the second of the four Galilean satellites that were discovered by Galileo over 400 years ago. Visible in small telescopes, the true nature of the moon is only detectable by visiting craft like Juno.
During its close fly-by, one of the onboard cameras known as Juno-Cam took the highest resolution images of the moon since Galileo took a flyby in 2000. The images supported the long held theory that the icy crusts at the north and south poles are not where they used to be. Another instrument on board, known as the Stellar Reference Unit (SRU), revealed possible activity resembling plumes where brine may have bubbled to the surface.
The ground track over Europa that was followed by Juno enabled imaging around the equatorial regions. The images revealed the usual, expected blocks of ice, walls, ridges and scarps but also found something else. Steep walled depressions that measured 20 to 50 kilometres across were also seen and they resembled large ovoid pits.
The observations of the meanderings of the north/south polar ice and the varied surface features all point towards an outer icy shell that is free-floating upon the sub surface ocean. This can only happen if the outer shell is not connected to the rocky interior. When this happens, there are high levels of stress on the ice which then causes the fracture pattern witnessed. The images represent the first time such patterns have been seen in the southern hemisphere, the first evidence of true polar wandering.
The images from the SRU surprisingly provided the best quality images. It was originally designed to detect faint light from stars for navigation. Instead, the team used it to capture images when Europa was illuminated by the gentle glow of sunlight reflected from Jupiter. It was quite a novel approach and allowed complex features to become far more pronounced than before. Intricate networks of ridges criss-crossing the surface were identified along with dark stains from water plumes. One feature in particular stood out, nicknamed ‘the Platypus’, it was a 37 kilometre by 67 kilometre region shaped somewhat like a platypus.
Source : NASA’s Juno Provides High-Definition Views of Europa’s Icy Shell
How do you weigh one of the largest objects in the entire universe? Very carefully,…
Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…
Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…
Some binary stars are unusual. They contain a main sequence star like our Sun, while…
11 million years ago, Mars was a frigid, dry, dead world, just like it is…
Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…