The James Webb Space Telescope (JWST) continues to make amazing discoveries. This time in the constellation of Pictor where, in the Beta Pictoris system a massive collision of asteroids. The system is young and only just beginning its evolutionary journey with planets only now starting to form. Just recently, observations from JWST have shown significant energy changes emitted by dust grains in the system compared to observations made 20 years ago. Dust production was thought to be ongoing but the results showed the data captured 20 years ago may have been a one-off event that has since faded suggesting perhaps, an asteroid strike!
Beta Pictoris is a young star located 63 light years away in the constellation Pictor. It has become well known for its fabulous circumstellar disk of gas and dust out of which a new system of planets is forming. It has been the subject of many a study because not only does it provide an ideal opportunity to study planetary formation but one of those planets Beta Pictoris b has already been detected.
Wind the clock back 20 years and the Spitzer infra-red observatory was observing Beta Pictoris. It was looking for heat being emitted by crystalline silicate minerals which are often found around young stars and on celestial bodies. Back in 2004-2005 no traces were seen suggesting a collision occurred among asteroids destroying them and turning their bodies into find dust particles, smaller even than grains of sand and even powdered sugar.
Radiation was detected at the 17 and 24 micron wavelengths by Spitzer, the result of significant amounts of dust. Using JWST, the team studied radiation from dust particles around Beta Pictoris and were able to compare with these Spitzer findings. They were able to identify the composition and size of particles in the same area around Beta Pictoris that was studied by Spitzer. They found a significant reduction in radiation at the same wavelengths from 20 years ago.
According to Christine Chen, lead astronomer from the John Hopkins University ‘With Webb’s new data, the explanation we have is that, in fact, we witnessed the aftermath of an infrequent, cataclysmic event between large asteroid-sized bodies, marking a complete change in our understanding of this star system.’
By tracking the distribution of particles across the circumstellar disk, the team found that the dust seems to have been dispersed outward by radiation from the hot young star. Previously with observations from Spitzer, dust surrounded the star which was heated up by its thermal radiation making it a strong thermal emitter. This is no longer the case as that dust has moved, cooled and no longer emits those thermal features.
The discovery has adjusted our view of planetary system formation. Previous theories suggested that small bodies would accumulate and replenish the dust steadily over time. Instead, JWST has shown that the dust is not always replenished with time but that it takes a cataclysmic asteroid impact to seed new planetary systems with new dust. The team estimate the asteroid that was pulverised was about 100,000 times the size of the asteroid that killed the dinosaurs!
Source : WEBB TELESCOPE REVEALS ASTEROID COLLISION IN NEIGHBORING STAR SYSTEM
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…