Space Exploration Technologies

A Walking Balloon Could One Day Explore Titan – Or Earth’s Sea Floor

Novel ways to move on other celestial bodies always draw the attention of the space exploration community. Here at UT, we’ve reported on everything from robots that suspend themselves from the walls of Martian caves to robots that hop using jets of locally mined gas. But we haven’t yet reported on the idea of a balloon that “walks.” But that is the idea behind the BALloon Locomotion for Extreme Terrain, or BALLET, a project from Hari Nayar, a Principal Roboticist at NASA’s Jet Propulsion Laboratory, and his colleagues.

How exactly does a balloon “walk,” you might ask? By picking up and moving one of its six feet. BALLET’s architecture involves a positively buoyant balloon supporting six “feet” attached to adjustable cables. The “feet” are small science packages capable of taking small surface samples or analyzing the chemical composition of the part of the surface it touches.

Each foot is attached to three cables, individually controlled by pulleys. When a foot is done doing its science work at a given location, BALLET retracts the cables for the foot, lifting it off the surface. It then extends the cables using different lengths for the cables to place the foot in a new location.

Balloons have been an integral part of NASA’s explorations, as SciShow describes in this video.
Credit – SciShow

Preliminary research on the concept was done as part of a NASA Institute for Advanced Concepts (NIAC) grant in 2018. That research showed that it was better to lift two opposing feet off the ground at the same time to ensure the balloon’s stability. It also demonstrated where the concept would be most useful—Titan.

Balloon locomotion is typically considered somewhere like Venus, where it could float in the atmosphere in conditions similar to Earth. However, that altitude would make controlling a payload placed on the ground exceedingly tricky. Additionally, the harsh conditions close enough to the ground to be feasible would make the material requirements of the system untenable.

Similarly, a balloon could also work on Mars, but the high wind speeds of the sparse atmosphere would make controlling the balloon difficult. Titan offers the best of both worlds – a relatively stable, thick atmosphere where a negatively buoyant balloon would be feasible and stable environmental conditions that wouldn’t blow BALLET everywhere.

The current plan for exploring Titan – a helicopter named Dragonfly.

It also has many interesting places to explore, including cryovolcanoes and methane lakes. BALLET would allow traversal over even some of the most difficult terrain without accounting for considerations that would dramatically affect the capabilities of either a rover or a helicopter, such as the planned Dragonfly mission. 

There are still plenty of design considerations, though, such as the difficulty of controlling all the different variables, such as balloon orientation, cable length for each of the 18 cables, and pathfinding, simultaneously. After the completion of the Phase I project, the concept appears to be on hold in terms of receiving further funding from NASA at this point.

However, in terms of applications, BALLET also has some obvious ones on Earth. One that immediately sprang to mind is the collection of “nodules” as part of an undersea mining operation. Given the increased need for cobalt and other materials provided in those nodules and the bad image that comes from the destruction of the seabed that comes with traditional mining techniques, this idea might be one of those rare space exploration ideas that sooner sees an application on Earth than off of it.

Learn More:
Nayar et al. – Balloon Locomotion for Extreme Terrain
UT – A Robot With Expandable Appendages Could Explore Martian Caves And Cliffs
UT – A Hopping Robot Could Explore Europa Using Locally Harvested Water
UT – Drones Could Help Map the Lunar Surface with Extreme Precision

Lead Image:
Artist’s conception of the BALLET concept mission architecture, including a “single step” action.
Credit – Nayar et al.

Andy Tomaswick

Recent Posts

An Ambitious Mission to Neptune Could Study Both the Planet and Triton

Mission concepts to the outer solar system are relatively common, as planetary scientists are increasingly…

1 hour ago

Earth’s Shadow Nicks the Moon During This Week’s Partial Lunar Eclipse

The Moon just brushes the umbral shadow of the Earth during Tuesday night's partial lunar…

4 hours ago

Mars has an Amazing Variety of Clouds

Mars has always held a special place in our hearts, likely from hints over the…

6 hours ago

Can a Greenhouse with a Robotic Arm Feed the Next Lunar Astronauts?

Continuous human habitation of the Moon is the state aim of many major space-faring nations…

20 hours ago

Early Dark Energy Could Resolve Two of the Biggest Mysteries in Cosmology

Of all the mysteries facing astronomers and cosmologists today, the "Hubble Tension" remains persistent! This…

20 hours ago

Studying Stars from the Lunar Surface with MoonLITE, Courtesy of NASA’s Commercial Lunar Payload Services

Optical interferometry has been a long-proven science method that involves using several separate telescopes to…

21 hours ago