galaxies

Are Andromeda and the Milky Way Doomed to Collide? Maybe Not

Scientists discovered the Andromeda galaxy, known as M31, hundreds of years ago, and around a century ago, we realized that it had negative radial velocity toward the Milky Way. In other words, eventually, the two galaxies would merge spectacularly. That has been common knowledge for astronomers since then, but is it really true? A new paper from researchers at the University of Helsinki looks at several confounding factors, including the gravitational influence of other galaxies in our local group, and finds only a 50% chance that the Milky Way will merge with the Andromeda galaxy in the next 10 billion years. 

That seems like a pretty big thing to get the physics wrong on. So, how did the authors come to that conclusion? They accounted for a problem that has been popularized in media as of late – the three-body – or in this case, four-body – problem. And with that problem comes a lot of uncertainty, which is why there’s still a 50% chance that this huge event might still happen. 

Thinking of Andromeda and the Milky Way in isolation doesn’t account for the other galaxies in what we know as the “Local Group.” This comprises approximately 100 smaller galaxies at various orientations, distances, and speeds. The largest of the remaining galaxies is the Triangulum galaxy, M33, which is about 2.7 million light-years away and consists of upwards of a mere 40 billion stars. That’s about 40% of the approximately 100 billion stars in the Milky Way but a mere 4% of the nearly 1 trillion stars estimated to exist in Andromeda. Still, they would have their own gravitational pull, contorting the simplistic dynamic between Andromeda and the Milky Way.

Fraser explains some of the orbital mechanics around Andromeda’s motion.

Further confounding that dynamic is the Large Magellanic Cloud, which is either the second or third closest galaxy to our own at a distance of only 163,000 light years. This is slightly larger than the Milky Way’s diameter, at 105,700. It also houses around 20 billion stars, so while it’s even less massive than M33, it still exerts a hefty gravitational pull.

The authors accounted for the gravitational pull of both of those other galaxies in their calculations of the paths of the Milky Way and Andromeda over the next few billion years. They found that the complicated dance of astronomical giants could potentially result in a scenario where the two galaxies don’t merge. However, there was another significant factor in their calculations: uncertainty.

Scientists never like uncertainty. In fact, much of their research tries to place bounds on certain parameters, like the rotational speed of galaxies or the distances between them. Unfortunately, despite their proximity, there are many uncertainties surrounding the four galaxies used in the study, and those uncertainties make precise calculations of the effects of their gravitational and rotational pull difficult.

Fraser discusses what stars, if any, we can see in Andromeda.

Developing estimates rather than concrete numbers is one-way scientists often deal with uncertainty, and in this case, that estimate fell right at the 50% mark in terms of whether or not the two galaxies would collide. However, there is still a lot of uncertainty in that estimate, and plenty more confounding factors, including the other galaxies in the local group, will influence the final outcome. Ultimately, time will help solve the mystery, but that is a very long time on the scale of galaxy mergers. If it happens at all, a merger between the Milky Way and Andromeda will happen long after our own Sun has burnt out, and humans will either die out with it or find a way to expand to new stars. And if, at that point, we get easy access to an additional galaxy’s worth of resources, it would be all the better for us.

Learn More:
Sawala et al. – Apocalypse When? No Certainty of a Milky Way — Andromeda Collision
UT – Are Andromeda and the Milky Way Already Exchanging Stars?
UT – What a Mess. When the Milky Way and Andromeda Merge, it’ll Look Like This
UT – We Might Be Able to Measure Dark Energy Through the Milky Way’s Collision With Andromeda

Lead Image:
This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth’s night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull.
Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger

Andy Tomaswick

Recent Posts

James Webb Confirms Hubble’s Calculation of Hubble’s Constant

We have been spoiled over recent years with first the Hubble Space Telescope (HST) and…

20 hours ago

What Should Light Sails Be Made Out Of?

The Breakthrough Starshot program aims to cross the immense distances to the nearest star in…

20 hours ago

A Giant Meteorite Impact 3.26 Billion Years Ago Helped Push Life Forward

The Earth has always been bombarded with rocks from space. It’s true to say though…

21 hours ago

America’s Particle Physics Plan Spans the Globe — and the Cosmos

RALEIGH, N.C. — Particle physicist Hitoshi Murayama admits that he used to worry about being…

1 day ago

Millions of Phones Could Map the Earth’s Ionosphere

We are all familiar with the atmosphere of the Earth and part of this, the…

1 day ago

Detecting Primordial Black Hole Mergers Might be Within Our Grasp

One explanation for dark matter is that it's made out of primordial black holes, formed…

2 days ago