Black Holes

Simulating the Accretion Disk Around a Black Hole

Black holes are by their very nature, challenging to observe and difficult to spot. It’s usually observations of the accretion disk that reveal properties of the hidden black hole. There is often enough material within the accretion disk to make them shine so brightly that they can often be among the brightest objects in space. A wonderful image has been released which shows the highest resolution simulation of a black hole accretion disk ever created. 

The concept of black holes was first theorised by physicist John Mitchell in 1784 but it was Einstein’s theory of General Relativity that provided the necessary physics to understand them. The first indirect observation of a black hole came in 1971 of Cygnus X-1, the black hole at the centre of our Milky Way galaxy. Since then, more candidates have been identified with the first image of a black hole being captured in 2019.

This X-ray image of Cygnus X-1 was taken by a balloon-borne telescope, the High Energy Replicated Optics (HERO) project. NASA image.

The anatomy of black holes is fascinating and one of the most useful to astronomers is the accretion disk. It’s a swirling disk of dust and gas that orbits the black hole slowly spiralling inward before being lost beyond the event horizon. As the material accelerates, it heats up due to gravitational forces and emits the energy which we can often detect from Earth in the form of X-rays and ultraviolet radiation. 

A team of researchers from the Tohoku University and the University of Utsunomiya have announced their breakthrough in understanding the accretion disks. Using the power of  supercomputers like RIKEN’s (Japan’s largest comprehensive research institution) “Fugaku” and the National Astronomical Observatory of Japan’s “ATERUI II”, the team created the highest resolution simulations of an accretion disk to model the complex, almost chaotic nature of turbulence in the disks. 

Attempts have been made before but none of them have observed the inertial range largely due to the lack of computer power..until now. This recent study by the Japanese team has successfully reproduced the observed connections between large and small eddies in the accretion disk turbulence, the so called ‘inertial range.’ The results provide a significant step forward in understanding the physics of the environments and processes around black holes and how turbulence allows material to be transported toward the central black hole.

An artist’s illustration of a supermassive black hole (SMBH.) The SMBH in a distant galaxy expelled all the material in its accretion disk, clearing out a vast area. Image Credit: ESA

The team also discovered just why ions are selectively heated in accretion disks. Slow magnetosonic waves propagate and dominate the region causing the heating. These waves are low frequency compression waves that are driven by the interaction between a magnetic field and an electrically conductive material. The team showed that it was these waves that are thought to drive the heating process.

The study, which was published in Science Advances on 28 August, will help with the interpretation of data from telescopes like the Event Horizon telescope which is one of a number engaged in black hole studies. 

Source : Supercomputer Simulations Reveal the Nature of Turbulence in Black Hole Accretion Disks

Mark Thompson

Recent Posts

The Early Universe Had a Lot of Black Holes

The Hubble Deep Field and its successor, the Hubble Ultra-Deep Field, showed us how vast our Universe is and…

2 hours ago

SETI Scientists Scan TRAPPIST-1 for Technosignatures

If there's an advanced civilization in the TRAPPIST-1 system living on multiple worlds, there's a…

5 hours ago

A Star Was Kicked Out of a Globular Cluster by an Intermediate-Mass Black Hole

Astronomers have solid evidence for the existence of stellar-mass black holes and supermassive black holes.…

6 hours ago

Astronomers Have Found a Star with a Hot Jupiter and a Cold Super Jupiter in Orbit

Located in the constellation Ursa Major, roughly 300 light-years from Earth, is the Sun-like star…

21 hours ago

Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe

In February 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) confirmed they made the…

24 hours ago

Could You Find What A Lunar Crater Is Made Of By Shooting It?

Americans are famously fond of their guns. So it should come as no surprise that…

1 day ago