Astronomy

Japan Launches the First Wooden Satellite to Space

Space debris, which consists of pieces of spent rocket stages, satellites, and other objects launched into orbit since 1957 – is a growing concern. According to the ESA Space Debris Office, there are roughly 40,500 objects in LEO larger than 10 cm (3.9 inches) in diameter, an additional 1.1 million objects measuring 1 and 10 cm (0.39 to 3.9 inches) in diameter, and 130 million objects 1 mm to 1 cm (0.039 to 0.39 inches). The situation is projected to worsen as commercial space companies continue to deploy “mega-constellations” of satellites for research, telecommunications, and broadband internet services.

To address this situation, researchers from the University of Kyoto have developed the world’s first wooden satellite. Except for its electronic components, this small satellite (LingoSat) is manufactured from magnolia wood. According to a statement issued on Tuesday, November 5th, by the University of Kyoto’s Human Spaceology Center, the wooden satellite was successfully launched into orbit atop a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. This satellite, the first in a planned series, is designed to mitigate space debris and prevent what is known as “Kessler Syndrome.”

In 1978, NASA scientists Donald J. Kessler and Burton G. Cour-Palais proposed a scenario in which the density of objects in Low Earth Orbit (LEO) would become high enough that collisions between objects would cause a cascade effect. This would lead to a vicious cycle in which collisions caused debris, which would make further collisions more likely, leading to more collisions and more debris (and so on). For decades, astronomers and space agencies have feared that we are approaching this point or will be shortly.

Animation of Kyoto University’s prototype wooden satellite in space. Credit: Kyoto University

By manufacturing satellites out of wood, the University of Kyoto scientists expect they will burn up when they re-enter Earth’s atmosphere at the end of their service. This will prevent potentially harmful metal particles from being generated when a retired satellite returns to Earth. The small satellite measures just 10 cm (4 in) on a side and weighs only 900 grams, making it one of the lightest satellites ever sent to space. Its name comes from the Latin word for wood (“lingo”) and CubeSat, a class of small satellites with a form factor of 10 cm cubes.

Before launch, the science team installed LingoSat in a special container prepared by the Japan Aerospace Exploration Agency (JAXA). According to a spokesperson for Sumitomo Forestry, LignoSat’s co-developer, the satellite will “arrive at the ISS soon and will be released to outer space about a month later.”

Once the satellite reaches the ISS, it will dock via the Kibo Japanese Experiment Module (JEM) before deployment. It will then spend the next six months in space, and data will be sent from the satellite to researchers who will monitor it for signs of strain. Ultimately, the goal is to determine if wooden satellites can withstand the extreme temperature changes and conditions in space. A second satellite, LingoSat 2, is a double-unit CubeSat currently scheduled for launch in 2026.

Further Reading: The Guardian

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Flowing Martian Water was Protected by Sheets of Carbon Dioxide

Mars' ancient climate is one of our Solar System's most perplexing mysteries. The planet was…

2 hours ago

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish…

6 hours ago

A Space Walking Robot Could Build a Giant Telescope in Space

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then…

1 day ago

New Report Details What Happened to the Arecibo Observatory

In 1963, the Arecibo Observatory became operational on the island of Puerto Rico. Measuring 305…

2 days ago

We Understand Rotating Black Holes Even Less Than We Thought

The theory of black holes has several mathematical oddities. Recent research shows our understanding of…

2 days ago

Habitable Worlds are Found in Safe Places

When we think of exoplanets that may be able to support life, we hone in…

2 days ago