Radio Astronomy

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish pointing to the sky, or even an array of dish antennas such as the Very Large Array. What you likely don’t imagine is something that resembles a TV dish in your neighbor’s backyard. With modern electronics, it is relatively easy to build your own radio telescope. To understand out how it can be done, check out a recent paper by Jack Phelps.

He outlines in detail how you can construct a small radio telescope with a 1-meter satellite dish, a Raspberry Pi, and some other basic electronics such as analog-to-digital converters. It’s a fascinating read, and one of the most interesting features is that his design is tuned to a frequency of 1420.405 MHz. This is the frequency emitted by neutral hydrogen. Since it has a wavelength of about 21 centimeters, the hydrogen emission line is sometimes called the 21-cm line. Neutral hydrogen comprises the bulk of matter in the Universe. The 21-cm emission isn’t particularly bright, but because there is so much hydrogen out there, the signal is easy to detect. And wherever there is matter, so too is the hydrogen line.

Observations of hydrogen in the Milky Way (red dots). Credit: Jack Phelps

The emission is caused by a spin flip of the hydrogen’s electron. It’s a hyperfine emission, which means the line is very sharp. If you see the line shifted a bit, you know that’s because of relative motion. Astronomers have used the line to map the distribution of matter in the Milky Way, and have even used it to measure our galaxy’s rotation. Early observations of the line pointed to the existence of dark matter in our galaxy. And now you can do it at home.

There are other radio objects you can observe in the sky. The Sun is a popular target given its strong radio signal. Jupiter is another somewhat bright source. It’s a cool hobby. Even if you don’t intend to build a radio telescope of you’re own, it’s worth checking out the paper just to see how accessible radio astronomy has become.

Reference: J. Phelps. “Galactic Neutral Hydrogen Structures Spectroscopy and Kinematics: Designing a Home Radio Telescope for 21 cm Emission.” arXiv preprint arXiv:2411.00057 (2024).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

The Cosmos is Waiting for us to Explore. But we Should Choose our Path Wisely.

If you were Captain of the first USS Enterprise, where would you go!? Humanity is…

5 hours ago

The Moon Occults Mars for North America Monday Night, Just Before Opposition 2025

Now is the best time to observe Mars in 2025. Mars from 2014. Credit: Paul…

9 hours ago

Roman’s Telescope and Instruments are Joined

Scheduled for launch in 2027, the Nancy Grace Roman Telescope is slowly being readied for…

11 hours ago

SLS Could Launch A Titan Balloon Mission

Few places in the solar system are better suited to a balloon than Titan. The…

14 hours ago

How to Deploy and Talk To LEAVES on Venus

We reported before about a NIAC-funded project known as the Lofted Environment and Atmospheric Venues…

1 day ago

NASA is Keeping an Eye on InSight from Space

The InSight Lander arrived on Mars in 2018 to study the planet's interior. Its mission…

1 day ago