Radio Astronomy

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish pointing to the sky, or even an array of dish antennas such as the Very Large Array. What you likely don’t imagine is something that resembles a TV dish in your neighbor’s backyard. With modern electronics, it is relatively easy to build your own radio telescope. To understand out how it can be done, check out a recent paper by Jack Phelps.

He outlines in detail how you can construct a small radio telescope with a 1-meter satellite dish, a Raspberry Pi, and some other basic electronics such as analog-to-digital converters. It’s a fascinating read, and one of the most interesting features is that his design is tuned to a frequency of 1420.405 MHz. This is the frequency emitted by neutral hydrogen. Since it has a wavelength of about 21 centimeters, the hydrogen emission line is sometimes called the 21-cm line. Neutral hydrogen comprises the bulk of matter in the Universe. The 21-cm emission isn’t particularly bright, but because there is so much hydrogen out there, the signal is easy to detect. And wherever there is matter, so too is the hydrogen line.

Observations of hydrogen in the Milky Way (red dots). Credit: Jack Phelps

The emission is caused by a spin flip of the hydrogen’s electron. It’s a hyperfine emission, which means the line is very sharp. If you see the line shifted a bit, you know that’s because of relative motion. Astronomers have used the line to map the distribution of matter in the Milky Way, and have even used it to measure our galaxy’s rotation. Early observations of the line pointed to the existence of dark matter in our galaxy. And now you can do it at home.

There are other radio objects you can observe in the sky. The Sun is a popular target given its strong radio signal. Jupiter is another somewhat bright source. It’s a cool hobby. Even if you don’t intend to build a radio telescope of you’re own, it’s worth checking out the paper just to see how accessible radio astronomy has become.

Reference: J. Phelps. “Galactic Neutral Hydrogen Structures Spectroscopy and Kinematics: Designing a Home Radio Telescope for 21 cm Emission.” arXiv preprint arXiv:2411.00057 (2024).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

View Comments

  • This has triggered fond memories of wanting to build a DIY radio-telescope for SETI back in 1999. :)

  • I'd love to build this, but it seems a very daunting project to figure everything out on my own. It would be cool to get a bunch of folks together as a community to support each other in building one. Any thoughts? Interest?

Recent Posts

Pentagon’s Latest UFO Report Identifies Hotspots for Sightings

The Pentagon office in charge of fielding UFO reports says that it has resolved 118…

11 minutes ago

A New Way to Detect Daisy Worlds

The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…

60 minutes ago

Two Supermassive Black Holes on the Verge of a Merger

Researchers have been keeping an eye on the center of a galaxy located about a…

4 hours ago

Interferometry Will Be the Key to Resolving Exoplanets

When it comes to telescopes, bigger really is better. A larger telescope brings with it…

5 hours ago

A New Mission To Pluto Could Answer the Questions Raised by New Horizons

Pluto may have been downgraded from full-planet status, but that doesn't mean it doesn't hold…

6 hours ago

Astronomers Map the Shape of a Black Hole's Corona for the First Time

The Sun is surrounded by the corona, a region of superheated gas above the surface…

6 hours ago