Astronomy

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the first stars began to shine, according to new research.

Magnetic fields are everywhere in the universe, but most of those magnetic fields arise from a process called a dynamo mechanism. These are any physical process that can take magnetic fields and stretch them out, twist them up, and fold them over on each other to make them stronger. For example, dynamo processes in the core of the Earth give us our powerful magnetic field.

But astronomers also find magnetic fields at the very largest of scales, with weak but persistent fields spanning across galaxies or even galaxy clusters. These fields are usually no stronger than a millionth the strength of the Earth’s, but they can reach for millions of light years in length.

Astronomers have long wondered what powered the creation of these magnetic fields, and a new study has put forward and intriguing hypothesis.

When our Universe was only a few hundred million years old, the first stars began to shine. They quickly died and seeded the universe with bits and pieces of heavier elements, creating the first grains of dust in the process.

When the next generation of stars came online their powerful radiation shown through all the gas and dust surrounding them. That radiation was so powerful that it could literally push on the dust grains.

The dust grains were electrically charged, and once they started moving it created a weak but very large-scale electrical current. An electrical current naturally gives rise to a magnetic field. At first this magnetic field was uniform, but as time went on the dust grains would clump here and there leading to irregularities that would start to mix up entangle the magnetic field.

These magnetic fields were incredibly weak, no more than a billionth the strength of the Earth. But they were very large, the researchers predict, at least a few thousand light-years in size. These are the perfect conditions to allow for dynamo mechanisms to begin to amplify them and stretch them out to their present-day size.

The scenario painted by the researchers is essentially a battery made of dust surrounding newborn stars stretching for thousands of light-years in the early universe. It’s a fascinating possibility, and the researchers propose that the next step is to investigate how the evolution of these fields unfold in detailed simulations of cosmic evolution, and compare those results to observations.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

6 hours ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

11 hours ago

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

1 day ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

1 day ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

1 day ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

1 day ago