Astronomy

How Webb Stays in Focus

One of the most difficult challenges when assembling a telescope is aligning it to optical precision. If you don’t do it correctly, all your images will be fuzzy. This is particularly challenging when you assemble your telescope in space, as the James Webb Space Telescope (JWST) demonstrates.

Unlike the Hubble Space Telescope, the JWST doesn’t have a single primary mirror. To fit in the launch rocket, it had to be folded, then assembled after launch. For this reason and others, JWST’s primary reflector is a set of 18 hexagonal mirror segments. Each segment is only 1.3-meters wide, but when aligned properly, they act effectively as a single 6.5-meter mirror. It’s an effective way to build a larger space telescope, but it means the mirror assembly has to be focused in space.

To achieve this, each mirror segment has a set of actuators that can shift the segment along six axes of alignment. They are focused using a wavefront phase technique. Since light behaves as a wave, when two beams of light overlap, the waves create an interference pattern. When the mirrors are aligned properly, the waves of light from each mirror segment also align, creating a sharp focus.

The primary mirrors of Hubble and JWST compared. Credit: Wikipedia user Bobarino

For JWST, its Near Infrared Camera (NIRCam) is equipped with a wavefront camera. To align the mirrors, the JWST team points NIRCam at a star, then intentionally moves the mirrors out of alignment. This gives the star a blurred diffraction look. The team then positions the mirrors to focus the star, which brings them into alignment.

This was done to align the mirrors soon after JWST was launched. But due to vibrations and shifts in temperature, the mirror segments slowly drift out of alignment. Not by much, but enough that they need to be realigned occasionally. To keep things proper, the team typically does a wavefront error check every other day. There is also a small camera aimed at the mirror assembly, so the team can take a “selfie” to monitor the condition of the mirrors.

The JWST was designed to maintain a wavefront error of 150 nanometers, but the team has been able to maintain a 65 nanometer error. It’s an astonishingly tight alignment for a space telescope, which allows JWST to capture astounding images of the most distant galaxies in the observable universe.

You can learn more about this technique on the NASA Blog.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

21 hours ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

1 day ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

1 day ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

2 days ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

2 days ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 days ago