neutron star

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Every now and then, astronomers will detect an odd kind of radio signal. So powerful it can outshine a galaxy, but lasting only milliseconds. They are known as fast radio bursts (FRBs). When they were first discovered a couple of decades ago, we had no idea what might cause them. We weren’t even sure if they were astronomical in origin. FRB’s were so localized and so short-lived, it was difficult to gather data on them. But with wide-field radio telescopes such as CHIME we can now observe FRBs regularly and have a pretty good idea of their source: magnetars.

Magnetars are neutron stars with immensely powerful magnetic fields. Now that we can localize FRBs, we have been able to match a few of them to the region of a neutron star. While most FRBs occur in distant galaxies, in 2020 we observed one within the Milky Way. The magnetar source also happened to be a pulsar, and astronomers were able to show that the FRB [correlated with a glitch in the pulsar’s rotation,](https://briankoberlein.com/blog/power-of-magnetism/) thus confirming the source. So we are fairly certain that FRBs are caused by neutron stars, but we are still uncertain about the exact mechanism.

One popular idea is that fast radio bursts are caused by magnetic realignments. This is what drives flares on the Sun. Over time, the Sun’s magnetic field lines can get twisted up until they snap into realignment, releasing energy. If a similar effect occurs on magnetars, the resulting snap would be much faster and more powerful. One difficulty with this idea is that FRBs are so short-lived that they are almost too fast for magnetic field lines to realign. So astronomers keep looking for new ideas, and one recently proposed argues that they are caused by impact events.

Distribution of FRB duration and ISB sizes compared. Credit: Pham, et al

Collisions have long been known as the source of high-energy events. For example, some supernovae are caused by the collisions of neutron stars. We also know that comets and asteroids occasionally impact the Sun, so we would expect similar impacts to occur on neutron stars. In this new work, the authors propose that FRBs are caused when an interstellar body collides with a neutron star. The impact would trigger a powerful electromagnetic burst. To support their argument, the authors looked at the distribution of FRBs arranged by duration. The timing of FRBs follows a distribution similar to the distribution of solar system bodies. Not only that, the duration of an FRB seems to match the hypothetical duration of an impact event based on an object’s size.

While the data does seem to support the idea of impact-based FRBs, the study doesn’t solve all the mysteries surrounding these powerful bursts. We know, for example, that some FRBs are repeaters, meaning they occur multiple times from the same source. Some studies have shown that repeating FRBs are quasi-periodic, which would be difficult to explain through random collisions. It’s possible that repeating and non-repeating FRBs are caused by different mechanisms, though the data is still inconclusive on that point.

Reference: Pham, Dang, et al. “Fast Radio Bursts and Interstellar Objects.” arXiv preprint arXiv:2411.09135 (2024).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

14 hours ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

15 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

16 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

16 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

23 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

1 day ago