Mars

New Supercomputer Simulation Explains How Mars Got Its Moons

Earth and Mars are the only two rocky planets in the solar system to have moons. Based on lunar rock samples and computer simulations, we are fairly certain that our Moon is the result of an early collision between Earth and a Mars-sized protoplanet called Theia. Since we don’t have rock samples from either Martian moon, the origins of Deimos and Phobos are less clear. There are two popular models, but new computer simulations point to a compromise solution.

Observations of Deimos and Phobos show that they resemble small asteroids. This is consistent with the idea that the Martian moons were asteroids captured by Mars in its early history. The problem with this idea is that Mars is a small planet with less gravitational pull than Earth or Venus, which have no captured moons. It would be difficult for Mars to capture even one small asteroid, much less two. And captured moons would tend to have more elliptical orbits, not the circular ones of Deimos and Phobos.

An alternative model argues that the Martian moons are the result of an early collision similar to that of Earth and Theia. In this model, an asteroid or comet with about 3% of the mass of Mars impacted the planet. It would not be large enough to have fragmented Mars, but it would have created a large debris ring out of which the two moons could have formed. This would explain the more circular orbits, but the difficulty is that debris rings would tend to form close to the planet. While Phobos, the larger Martian moon, orbits close to Mars, Deimos does not.

This new model proposes an interesting middle way. Rather than an impact or direct capture, the authors propose a near miss by a large asteroid. If an asteroid passed close enough to Mars, the tidal forces of the planet would rip the asteroid apart to create a string of fragments. Many of those fragments would be captured in elliptical orbits around Mars. As computer simulations show, the orbits would shift over time due to the small gravitational tugs of the Sun and other solar system bodies, eventually causing some of the fragments to collide. This would produce a debris ring similar to that of an impact event, but with a greater distance range, better able to account for both Phobos and Deimos.

While this new model appears to be better than the capture and impact models, the only way to resolve this mystery will be to study samples from the Martian moons themselves. Fortunately, in 2026 the Mars Moons eXploration mission (MMX) will launch. It will explore both moons and gather samples from Phobos. So we should finally understand the origin of these enigmatic companions of the Red Planet.

Reference: Kegerreis, Jacob A., et al. “Origin of Mars’s moons by disruptive partial capture of an asteroid. Icarus 425 (2025): 116337.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Is the Universe a Fractal?

For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…

3 hours ago

How Did Black Holes Grow So Quickly? The Jets

A current mystery in astronomy is how supermassive black holes gained so much heft so…

11 hours ago

Quantum Correlations Could Solve the Black Hole Information Paradox

The black hole information paradox has puzzled physicists for decades. New research shows how quantum…

1 day ago

M87 Releases a Rare and Powerful Outburts of Gamma-ray Radiation

In April 2019, the Event Horizon Telescope (EHT) collaboration made history when it released the first-ever…

1 day ago

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

1 day ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

2 days ago