Cosmology

Observations by DESI Open the Door to Modified Gravity Models

The standard theory of cosmology is based upon four things: the structure of space and time, matter, dark matter, and dark energy. Of these, dark energy is the one we currently understand the least. Within the standard model, dark energy is part of the structure of space and time as described by general relativity. It is uniform throughout the cosmos and expressed as a parameter known as the cosmological constant. But initial observations from the Dark Energy Spectroscopic Instrument (DESI) suggest the rate of comic expansion may vary over time. If further observations reinforce this, it could open up cosmological models to alternatives to general relativity known as modified gravity.

In a recent paper on the arXiv, the authors look at one version of modified gravity known as Horndeski’s theory. The theory is based upon a generalization of general relativity. Einstein’s original theory was based upon the principle of equivalence, from which he derived a generalized description of spacetime through what is known as a metric tensor. From this, you can derive the equations of motion for objects in a gravitation field, just as Newton’s laws lead to equations of motion for objects under physical and gravitational forces.

General relativity is the simplest model with a metric tensor. Horndeski’s theory is the most general model with a metric tensor and allows for the presence of a uniform scalar field. There are special cases of Horndeski’s theory, such as the Brans-Dicke model and the model of quintessence. Both of these models have been used to describe dark energy in a more general way, as well as dark matter in some cases. While observations of gravitational waves, galactic clustering and cosmic expansion constrain these models to some degree, they don’t entirely rule them out. So far, our data on dark energy isn’t rich enough to distinguish between alternatives.

Comparison between standard model and modified gravity. Credit: Chudaykin and Kunz

This latest work looks at the DESI results in the context of Horndeski models, specifically looking at how it might address the time-evolution of cosmic expansion suggested by the DESI data. It found that if the time evolution is taken to be correct, then a modified gravity is a better fit than the standard model. The study goes on to show that Horndeski models only work where the time evolution of the scalar field correlates to the proposed time evolution of dark matter. This rules out some Horndeski models that have been used to explain dark matter.

Overall, the authors argue that the DESI observations make Horndeski’s theory a viable alternative to general relativity. That is, if the data holds up. The Dark Energy Spectroscopic Instrument is still in its early stages, and we don’t yet know what the final results will be. But it is clear that Einstein’s seat on the theoretical throne isn’t entirely assured, and Horndeski’s theory might just be the one to steal the crown.

Reference: Chudaykin, Anton, and Martin Kunz. “Modified gravity interpretation of the evolving dark energy in light of DESI data.” arXiv preprint arXiv:2407.02558 (2024).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

It's Time for Sustainable Development Goal for Space

In 2015, the United Nations adopted the 2030 Agenda for Sustainable Development—the Sustainable Development Goals…

2 hours ago

A New Industrial Megaproject Threatens the View of the World’s Best Observatories

Astronomers have been battling threats to their clear skies on all fronts lately. One of…

10 hours ago

The Cosmos is Waiting for us to Explore. But we Should Choose our Path Wisely.

If you were Captain of the first USS Enterprise, where would you go!? Humanity is…

1 day ago

The Moon Occults Mars for North America Monday Night, Just Before Opposition 2025

Now is the best time to observe Mars in 2025. Mars from 2014. Credit: Paul…

1 day ago

Roman’s Telescope and Instruments are Joined

Scheduled for launch in 2027, the Nancy Grace Roman Telescope is slowly being readied for…

1 day ago

SLS Could Launch A Titan Balloon Mission

Few places in the solar system are better suited to a balloon than Titan. The…

2 days ago