Titan

A Mission to Dive Titan’s Lakes – and Soar Between Them

Titan is one of the solar system’s most fascinating worlds for several reasons. It has something akin to a hydrological cycle, though powered by methane. It is the solar system’s second-largest moonMooner our own. It is the only other body with liquid lakes on its surface. That’s part of the reason it has attracted so much attention, including an upcoming mission known as Dragonfly that hopes to use its thick atmosphere to power a small helicopter. But some of the most interesting features on Titan are its lakes, and Dragonfly, given its means of locomotion, can’t do much with those other than look at them from afar. So another mission, initially conceived by James McKevitt, then an undergraduate at Loughborough University but now a PhD student at University College London would take a look at both their surface and underneath.

The mission, which has undergone several iterations, was initially designed to mimic the hunting motion of a gannet. This seabird famously dives under the water to search for fish and then floats back up to the top before setting off again. In the original paper describing the mission concept, Mr. McKevitt focused on the hydrodynamics of how such a mission would be possible on Titan, including the physics of diving into a lake of liquid methane without breaking the probe.

Luckily, the most fascinating lakes on Titan are all clustered around the north pole, so it would be theoretically possible to hop between one lake and another, given there was enough thrust/power. However, as time went on, the original mission concept seemed less and less feasible – especially given the most required to both take off from a resting position on top of a lake and dive down deeply enough into the next lake to make a meaningful difference in the environment.

Fraser discusses the importance of a mission to Titan.

Of particular concern was the power system – RTGs, the only current system that would feasibly power such a probe on Titan’s fully enveloped surface, would be too heavy for such a mission architecture. So, Mr. McKevitt changed tact and created something entirely different.

During COVID-19, he created an organization known as Conex Research to explore complex missions in a collaborative think-tank format. He then adapted Astraeus, as the mission was known, to a more achievable format, which was then described on Conex’s website. In a press release from August of 2022, the mission had morphed into a four-part system.

First is a “Main Orbital Spacecraft,” which would orbit the Moon Moondeploy two smaller vehicles – Mayfly and Manta. As their names suggest, Mayfly would flit about as an aerial observation platform, while Manta would dive into the lakes that were so intriguing in the original mission architecture. A series of 2U Cubesats, called “Mites,” would also join them and measure different parts of Titan’s atmosphere during a slow descent period after being released from the MOS.

Fraser discusses the Dragonfly mission planned to visit Titan’s surface.

That sounds like a pretty hefty lift, especially for a group of volunteer contributors, even if there are almost 30 of them. Lately, the group hasn’t had much of an update since they presented the mission format at the International Astronautical Conference in 2022. But if they are still making progress on the mission, there is a chance it might one day make it all the way to the bottom of one of Titan’s lakes.

Learn More:
James McKevitt – ASTrAEUS: An Aerial-Aquatic Titan Mission Profile
Conex Research – The Astraeus Mission to Titan
UT – Scientists Construct a Global Map of Titan’s Geology
UT – Titan May Have a Methane Crust 10 Km Thick

Lead Image:
Surface of Titan (left) with modeling mockups of the Mayfly (middle) and Manta (right).
Credit – Conex Research

Andy Tomaswick

View Comments

Recent Posts

Webb Observes Protoplanetary Disks that Contradict Models of Planet Formation

The James Webb Space Telescope (JWST) was specifically intended to address some of the greatest…

15 hours ago

James Webb’s Big Year for Cosmology

The James Webb Space Telescope was designed and built to study the early universe, and…

2 days ago

Top Astronomy Events for 2025

Catching the best sky watching events for the coming year 2025. Comet C/2023 A3 Tsuchinshan-ATLAS…

2 days ago

Is the Universe a Fractal?

For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…

3 days ago

How Did Black Holes Grow So Quickly? The Jets

A current mystery in astronomy is how supermassive black holes gained so much heft so…

3 days ago

Quantum Correlations Could Solve the Black Hole Information Paradox

The black hole information paradox has puzzled physicists for decades. New research shows how quantum…

4 days ago