After surveying more than 200 stars in various stages of formation, ESA’s XMM-Newton X-Ray Observatory has revealed a dramatically different picture than what astronomers were predicting. Specifically, the observatory helped show how streams of matter fall down onto the stars’ magnetic atmosphere, cooling the atmosphere, and absorbing X-rays.
XMM-Newton targeted new star formation in the Taurus Molecular Cloud; a vast star formation region located only 400 light-years from Earth. Many of these stars are still accumulating new material through a process called accretion. As new matter strikes the star, it heats up, blasting out ultraviolet radiation.
Astronomers expected that the infalling material would heat the stellar envelop so much that it should produce an excess of X-rays as well. But that wasn’t happening. Instead, it appears that the streams of material are so dense, they actually cool the outer atmosphere, and absorb most of the X-rays being emitted.
There should also be large quantities of dust falling into the star that should obscure it from our view, but the stars are seen burning brightly. It must be that the star’s radiation is actually vapourizing the dust before it can reach the star, giving us a clear view.
Original Source: ESA News Release
For decades, astronomers have used powerful instruments to capture images of the cosmos in various…
Although the outer Solar System is mostly empty, there are icy objects drifting within the…
A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…
About 370,000 years after the Big Bang, the Universe had cooled down so light could…
Space tourism here is here to stay, and will likely remain a permanent fixture of…
In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…