‘Laser Comb’ To Measure the Accelerating Universe

Back in April, UT published an article about using a device called a ‘laser comb’ to search for Earth-like planets. But astronomers also hope to use the device to search for dark energy in an ambitious project that would measure the velocities of distant galaxies and quasars over a 20-year period. This would let astronomers test Einstein’s theory of general relativity and the nature of the mysterious dark energy. The device uses femto-second (one millionth of one billionth of a second) pulses of laser light coupled with an atomic clock to provide a precise standard for measuring wavelengths of light. Also known as an “astro-comb,” these devices should give astronomers the ability to use the Doppler shift method with incredible precision to measure spectral lines of starlight up to 60 times greater than any current high-tech method. Astronomers have been testing the device, and hope to use one in conjunction with the new Extremely Large Telescope which is being designed by ESO, the European Southern Observatory.

Astronomers use instruments called spectrographs to spread the light from celestial objects into its component colors, or frequencies, in the same way water droplets create a rainbow from sunlight. They can then measure the velocities of stars, galaxies and quasars, search for planets around other stars, or study the expansion of the Universe. A spectrograph must be accurately calibrated so that the frequencies of light can be correctly measured. This is similar to how we need accurate rulers to measure lengths correctly. In the present case, a laser provides a sort of ruler, for measuring colors rather than distances, with an extremely accurate and fine grid.

New, extremely precise spectrographs will be needed in experiments planned for the future Extremely Large Telescope.

“We’ll need something beyond what current technology can offer, and that’s where the laser frequency comb comes in. It is worth recalling that the kind of precision required, 1 cm/s, corresponds, on the focal plane of a typical high-resolution spectrograph, to a shift of a few tenths of a nanometre, that is, the size of some molecules,” explains PhD student and team member Constanza Araujo-Hauck from ESO.

The new calibration technique comes from the combination of astronomy and quantum optics, in a collaboration between researchers at ESO and the Max Planck Institute for Quantum Optics. It uses ultra-short pulses of laser light to create a ‘frequency comb’ – light at many frequencies separated by a constant interval – to create just the kind of precise ‘ruler’ needed to calibrate a spectrograph.

The device has been tested on a solar telescope, a new version of the system is now being built for the HARPS planet-finder instrument on ESO’s 3.6-metre telescope at La Silla in Chile, before being considered for future generations of instruments.

More information on laser combs.

Source: ESO

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 hours ago

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

17 hours ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

18 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

19 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

19 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

1 day ago