[/caption]
NASA’s Fermi Gamma-ray Space Telescope discovered the first pulsar that beams only in gamma rays. A pulsar is a rapidly spinning neutron star, the crushed core left behind when a massive sun explodes. Astronomers have cataloged nearly 1,800 pulsars. Although most were found through their pulses at radio wavelengths, some of these objects also beam energy in other forms, including visible light and X-rays. However, this new object only pulses at gamma-ray energies. “This is the first example of a new class of pulsars that will give us fundamental insights into how these collapsed stars work,” said Stanford University’s Peter Michelson, principal investigator for Fermi’s Large Area Telescope.
The gamma-ray-only pulsar lies within a supernova remnant known as CTA 1, which is located about 4,600 light-years away in the constellation Cepheus. Its lighthouse-like beam sweeps Earth’s way every 316.86 milliseconds. The pulsar, which formed about 10,000 years ago, emits 1,000 times the energy of our sun.
“We think the region that emits the pulsed gamma rays is broader than that responsible for pulses of lower-energy radiation,” explained team member Alice Harding at NASA’s Goddard Space Flight Center in Greenbelt, Md. “The radio beam probably never swings toward Earth, so we never see it. But the wider gamma-ray beam does sweep our way.”
Scientists think CTA 1 is only the first of a large population of similar objects.
“The Large Area Telescope provides us with a unique probe of the galaxy’s pulsar population, revealing objects we would not otherwise even know exist,” says Fermi project scientist Steve Ritz, also at Goddard.
Fermi’s Large Area Telescope scans the entire sky every three hours and detects photons with energies ranging from 20 million to more than 300 billion times the energy of visible light. The instrument sees about one gamma ray every minute from CTA 1, enough for scientists to piece together the neutron star’s pulsing behavior, its rotation period, and the rate at which it is slowing down.
The pulsar in CTA 1 is not located at the center of the remnant’s expanding gaseous shell. Supernova explosions can be asymmetrical, often imparting a “kick” that sends the neutron star careening through space. Based on the remnant’s age and the pulsar’s distance from its center, astronomers believe the neutron star is moving at about a million miles per hour — a typical speed.
Source: NASA
Putting humans on Mars has been one of NASA's driving missions for years, but they…
There are good reasons to keep an eye on the Leonid meteors this year.
Rarely does something get developed which is a real game changer in space exploration. One…
The dream of traversing the depths of space and planting the seed of human civilization…
Supermassive Black Holes (SMBHs) can have billions of solar masses, and observational evidence suggests that…
A town in the Austrian Alps might not seem like the most conducive place to…