Categories: Chandra

Supernova Remnant May Actually Have a Partner

When a star with at least 8 times the mass of our Sun detonates as a supernova, it leaves behind a neutron star. This tiny object has the mass of a star, but it’s compressed down to a ball only 10 km (6 miles) across – its protons and electrons have been compressed together to form neutrons. One of these objects has puzzled astronomers for years, but now researchers think they’ve found the solution: it’s got a friend.

New data gathered by NASA’s Chandra X-Ray Observatory is helping to explain the mystery in RCW 103. This supernova remnant, located 10,000 light-years away, detonated about 2,000 years ago (I know, that means it really exploded 12,000 years ago). The bright blue dot at the centre of the image is the neutron star, blasting out X-ray radiation.

The problem with this neutron star is that only rotates once every 6.7 hours. That sounds fast, but there are neutron stars out there that can rotate many times a second. It should be turning much faster.

One possible answer for the mystery is that the original star that detonated, leaving this remnant wasn’t alone. It might have had a much lower-mass companion which still remains. It was the magnetic field interaction between the neutron star and the low-mass companion slowed down its rotation.

Original Source:Chandra

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

12 hours ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

13 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

14 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

14 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

19 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

21 hours ago