Categories: AstronomyBlack Holes

Young Stars Forming Near Galactic Black Hole

[/caption]

Just as young children need safe, nurturing environments to develop and grow, young stars, too need just the right environment to get their start in life. Or do they? At the center of our galaxy is a 4 million solar-mass black hole. If molecular clouds that form stellar nurseries were nearby, they should be ripped apart by powerful, black-hole-induced gravitational tides. But yet, astronomers have found two young protostars located just a few light-years from the galactic center. Using the Very Large Array of radio telescopes, astronomers from the Harvard-Smithsonian Center for Astrophysics and the Max Planck Institute for Radio Astronomy made this discovery, showing that stars indeed can form close to a black hole. “We literally caught these stars in the act of forming,” said Smithsonian astronomer Elizabeth Humphreys, who presented the finding today at a meeting of the American Astronomical Society in Long Beach, California.

It’s difficult to study the mysterious region near the Milky Way’s center. Visible light can’t penetrate the dominant gas and dust, so astronomers use other wavelengths like infrared and radio to penetrate the dust more easily.

Humphreys and her colleagues searched for water masers—radio signals that serve as signposts for protostars still embedded in their birth cocoons. They found two protostars located seven and 10 light-years from the galactic center. Combined with one previously identified protostar, the three examples show that star formation is taking place near the Milky Way’s core.

Their finding suggests that molecular gas at the center of our galaxy must be denser than previously believed. A higher density would make it easier for a molecular cloud’s self-gravity to overcome tides from the black hole, allowing it to not only hold together but also collapse and form new stars.

The discovery of these protostars corroborates recent theoretical work, in which a supercomputer simulation produced star formation within a few light-years of the Milky Way’s central black hole.

“We don’t understand the environment at the galactic center very well yet,” Humphreys said. “By combining observational studies like ours with theoretical work, we hope to get a better handle on what’s happening at our galaxy’s core. Then, we can extrapolate to more distant galaxies.”

Source: Harvard-Smithsonian Center For Astrophysics

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Detecting Primordial Black Hole Mergers Might be Within Our Grasp

One explanation for dark matter is that it's made out of primordial black holes, formed…

4 hours ago

What’s Behind the Martian Methane Mystery?

The seasonal variations of methane in the Martian atmosphere is an intriguing clue that there…

7 hours ago

Scientists Develop Technique to Create 3D Models of Cosmic Structures

For decades, astronomers have used powerful instruments to capture images of the cosmos in various…

23 hours ago

The Best Way to Find Planet Nine Might Be Hundreds of Tiny Telescopes

Although the outer Solar System is mostly empty, there are icy objects drifting within the…

1 day ago

It Takes Very Special Conditions to Create This Bizarre Stellar Spectacle

A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…

1 day ago

A New Look a the Most Ancient Light in the Universe

About 370,000 years after the Big Bang, the Universe had cooled down so light could…

1 day ago