Categories: Chandra

Cassiopeia A Comes Alive in 3-D Movies

[/caption]
Want to know what it’s like to fly through a supernova remnant? Then, THIS, you have to see. You’ll be able to experience SNR Cassiopeia A (Cas A) as never before, and see it across both time and space. Another time lapse animation shows the remnant’s expansion and changes over time, and still another provides a 3-D model of Cas A. Almost ten years ago, Chandra’s “First Light” image of Cas A revealed previously unseen structures and detail, and now, after eight years of observation, scientists have been able to construct these incredible animations which were presented at today’s American Astronomical Society meeting in Long Beach, California.

The fly-through movie is based on data from Chandra, NASA’s Spitzer Space Telescope, and ground-based optical telescopes. “We have always wanted to know how the pieces we see in two dimensions fit together with each other in real life,” said Tracey Delaney of the Massachusetts Institute of Technology. “Now we can see for ourselves with this ‘hologram’ of supernova debris.”

Delaney said there are two components to the explosion, a spherical component from the outer layers of the star and a flattened component from the inner layers of the star. Most intriguing, said Delaney is that the jets of the explosion are not all over the place but came out of the same plane in the supernova. Plumes, or jets, of silicon appear in the northeast and southwest, while plumes of iron are seen in the southeast and north. Astronomers had known about the plumes and jets before, but did not know that they all came out in a broad, disk-like structure.

Cas A expansion. Credit: NASA/CXC/SAO/D.Patnaude et al.


The time-lapse animation tracks the remnant’s expansion and changes over time, measuring the expansion velocity of features in Cas A. “With Chandra, we have watched Cas A over a relatively small amount of its life, but so far the show has been amazing,” said Daniel Patnaude of the Smithsonian Astrophysical Observatory in Cambridge, Mass. “And, we can use this to learn more about the aftermath of the star’s explosion.”

Using estimates of the properties of the supernova explosion, including its energy and dynamics, Patnaude’s group show that about 30% of the energy in this supernova has gone into accelerating cosmic rays, energetic particles that are generated, in part, by supernova remnants and constantly bombard the Earth’s atmosphere. The flickering in the movie provides valuable new information about where the acceleration of these particles occurs.

The researchers found the expansion is slower than expected based on current theoretical models. Patnaude thinks the explanation for this mysterious loss of energy is cosmic ray acceleration.

Cas A in 3-D. Credit: NASA/CXC/MIT/T.Delaney et al.

The 3-D model of Cas A was made possible through a collaboration with the Astronomical Medicine project based at Harvard. The goal of this project is to bring together the best techniques from two very different fields, astronomy and medical imaging.

“Right now, we are focusing on improving three-dimensional visualization in both astronomy and medicine,”said Harvard’s Alyssa Goodman who heads the Astronomical Medicine project. “This project with Cas A is exactly what we have hoped would come out of it.”

3-D visualization and the 3-D expansion model provide researchers with a unique ability to study this remnant. The implication of this work is that astronomers who build models of supernova explosions must now consider that the outer layers of the star come off spherically, but the inner layers come out more disk like with high-velocity jets in multiple directions.

Cassiopeia A is the remains of a star thought to have exploded about 330 years ago, and is one of the youngest remnants in the Milky Way galaxy. The study of Cas A and remnants like it help astronomers better understand how the explosions that generate them seed interstellar gas with heavy elements, heat it with the energy of their radiation, and trigger blast waves from which new stars form.

Source: Chandra site

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Webb Confirms a Longstanding Galaxy Model

The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…

29 mins ago

The Aftermath of a Neutron Star Collision Resembles the Conditions in the Early Universe

Neutron stars are extraordinarily dense objects, the densest in the Universe. They pack a lot…

31 mins ago

New View of Venus Reveals Previously Hidden Impact Craters

Think of the Moon and most people will imagine a barren world pockmarked with craters.…

4 hours ago

Multimode Propulsion Could Revolutionize How We Launch Things to Space

In a few years, as part of the Artemis Program, NASA will send the "first…

15 hours ago

China Trains Next Batch of Taikonauts

China has a fabulously rich history when it comes to space travel and was among…

15 hours ago

NASA Focusses in on Artemis III Landing Sites.

It was 1969 that humans first set foot on the Moon. Back then, the Apollo…

16 hours ago