Categories: Astronomy

Molecules in Gamma-Ray Burst Detected

[/caption]

Gamma-ray bursts are the universe’s most brilliant events, and now astronomers have been able to shed light on the composition of these spectacular phenomena, providing insight into star formation when the universe was about one-sixth its present age. Combining data from NASA’s Swift satellite, the W. M. Keck Observatory in Hawaii, and other facilities astronomers have, for the first time, identified gas molecules in the host galaxy of a gamma-ray burst. “We clearly see absorption from two molecular gases: hydrogen and carbon monoxide. Those are gases we associate with star-forming regions in our own galaxy,” said Xavier Prochaska, from the University of California Santa Cruz. He and his team believe that the burst exploded behind a thick molecular cloud similar to those that spawn stars in our galaxy today.

The explosion, designated GRB 080607, occurred in June, 2008. “This burst gave us the opportunity to ‘taste’ the star-forming gas in a young galaxy more than 11 billion light-years away,” said Prochaska.

Gamma rays from GRB 080607 triggered Swift’s Burst Alert Telescope shortly after 2:07 a.m. EDT on June 7, 2008. Swift calculated the burst’s position, beamed the location to a network of observatories, and turned to study the afterglow.

That night, University of California, Berkeley, professor Joshua Bloom and graduate students Daniel Perley and Adam Miller were using the Low Resolution Imaging Spectrometer on the 10m Keck I Telescope in Hawaii. “Because afterglows fade rapidly, we really had to scramble when we received the alert,” Perley says. “But in less than 15 minutes, we were on target and collecting data.”

The Peters Automated Infrared Imaging Telescope (PAIRITEL) in Arizona caught GRB 080607’s afterglow (circled) about three minutes after the explosion. The afterglow’s light has been greatly dimmed and reddened by interstellar dust in its host galaxy, 11.5 billion light years away. Credit: Adam Miller and Daniel Perley/UC Berkeley

A pair of robotic observatories also responded quickly. The NASA-supported Peters Automated Infrared Imaging Telescope (PAIRITEL) on Mount Hopkins, Ariz., and the Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory on Mount Hamilton, Calif., observed the burst’s afterglow within three minutes of Swift’s alert.

The spectrum from Keck established that the explosion took place 11.5 billion light-years away. GRB 080607 blew up when the universe was just 2.2 billion years old.

The molecular cloud in the burst’s host galaxy was so dense, less than 1 percent of the afterglow’s light was able to penetrate it. “Intrinsically, this afterglow is the second brightest ever seen. That’s the only reason we were able to observe it at all,” Prochaska says.

Screening from thick molecular clouds provides a natural explanation for so-called “dark bursts,” which lack associated afterglows. “We suspect that previous events like GRB 080607 were just too faint to be observed,” says team member Yaron Sheffer of the University of Toledo, Ohio.
Nearly half of the absorption lines found in the Keck spectrum are unidentified. The team expects that understanding them will provide new data on the simplest space molecules.

Prochaska and Sheffer presented the findings today at the 213th meeting of the American Astronomical Society in Long Beach, Calif. A paper describing the results will appear in a future issue of Astrophysical Journal Letters.

Most gamma-ray bursts occur when massive stars run out of nuclear fuel. As the star’s core collapses into a black hole or neutron star, gas jets punch through the star and into space. Bright afterglows occur as the jets heat gas that was previously shed by the star. Because a massive star lives only a few tens of millions of years, it never drifts far from its natal cloud.

Source: NASA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

2 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

14 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

15 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

16 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

19 hours ago

Uranus is Getting Colder and Now We Know Why

Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…

21 hours ago