Greetings, fellow SkyWatchers! Are you ready for another weekend under the stars? Then get out your telescopes and let’s go globular as we hunt down Messier Object 79. Polar weather got you down? Then let’s take a look at the pole stars both north and south and check into what Sir William Herschel was doing at this time of year. Then learn your history and I’ll meet you outside in the dark….
Thanks to Mechain and Messier’s careful notes, William Herschel later recovered M79 and resolved its stars. Although the practice of maintaining an astronomy diary isn’t for everyone, keeping simple records is very rewarding. Make note of the object’s appearance, equipment used, and sky conditions. Observing diaries just like those of Messier and Mechain have led countless astronomers along the road of discovery to all the deep-sky objects we know today!
Tonight let’s go from one navigational extreme to another as viewers in the Northern Hemisphere try their hand (and eye) at 390 light-year distant Polaris . Its fame as a ‘‘fixed star’’ is a bit undeserved, because it is approaching us at 25 kilometers per second. Only its sky position closest to the north celestial pole makes Polaris appear to ‘‘stand still’’ while the other stars revolve around it.
Ranked the 49th brightest star, Alpha Ursa Minoris may look ordinary but is not. Polaris is a Cepheid variable, a star that expands and contracts on a regular basis, changing its brightness slightly. Modern
interferometry has revealed it as slightly irregular—an ‘‘overtone pulsator’’—and a multiple one at that. Polaris’ triple system took the resolving power of the Hubble Space Telescope to reveal its spectroscopic component, but even a small telescope can spot its gravitationally bound blue companion!
The Southern Hemisphere also has a near-pole star—Sigma Octanis—but at magnitude 5 (300 times fainter than Polaris), it doesn’t make a good guide star. Ancient navigators found better success with the constellation Crux, better known as the Southern Cross. Its two brightest stars, Gacrux and acrux, are oriented north–south and point across the pole to brilliant Archenar. Splitting the distance between Gacrux and Archenar lands you within 2 degrees of the south celestial pole. A southern double star comparable to Polaris in appearance is Lambda Centauri. The difference in magnitude between components and separation are about the same!
With a combined magnitude of 6, this small galactic cluster will show as a slight compression of the starfield, a challenging binocular deep-sky object. A small telescope at modest magnification will resolve NGC 1662 into a jewel-like chain of blue and gold stars. Astronomers have studied it extensively to refine its members’ proper motions, and it may have once contained more stars during its 300-million-year evolution!
Until next week? Dreams really do come true… When you keep on reaching for the stars!
This week’s awesome images are: M79: Credit—Palomar Observatory, courtesy of Caltech, Sally Ride: Credit—NASA, ‘‘Turning Still’’: Credit—Joe Orman, Tobias Mayer (historical image), NGC 1662 and NGC 1977: Credit—Palomar Observatory, courtesy of Caltech. Thank you so much!
Despite decades of study, black holes are still one of the most puzzling objects in…
74 million kilometres is a huge distance from which to observe something. But 74 million…
Astronomers have only been aware of fast radio bursts for about two decades. These are…
How do you weigh one of the largest objects in the entire universe? Very carefully,…
Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…
Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…