[/caption]
ESO’s La Silla Observatory has snapped a new image of the famous Helix planetary nebula, revealing a rich — and rarely photographed — background of distant galaxies.
The Helix Nebula, NGC 7293, about 700 light-years away in the constellation of Aquarius, is a Sun-like star in its final explosion before retirement as a white dwarf.
Shells of gas are blown off from the surface of such stars, often in intricate and beautiful patterns, and shine under the harsh ultraviolet radiation from the faint, hot central star. The main ring of the Helix Nebula is about two light-years across, or half the distance between the Sun and its nearest stellar neighbour.
Despite being photographically spectacular, the Helix is hard to see visually as its light is thinly spread over a large area of sky. The history of its discovery is rather obscure. It first appears in a list of new objects compiled by the German astronomer Karl Ludwig Harding in 1824. The name Helix comes from the rough corkscrew shape seen in the earlier photographs.
Although the Helix looks very much like a doughnut, studies have shown that it possibly consists of at least two separate discs with outer rings and filaments. The brighter inner disc seems to be expanding at about 100,000 km/h (about 62,000 miles/h) and to have taken about 12,000 years to form.
Because the Helix is relatively close — it covers an area of the sky about a quarter of the full Moon — it can be studied in much greater detail than most other planetary nebulae and has been found to have an unexpected and complex structure. All around the inside of the ring are small blobs, known as “cometary knots,” with faint tails extending away from the central star. Although they look tiny, each knot is about as large as our Solar System. These knots have been extensively studied, both with the ESO Very Large Telescope and with the NASA/ESA Hubble Space Telescope, but remain only partially understood. A careful look at the central part of this object reveals not only the knots, but also many remote galaxies seen right through the thinly spread glowing gas. Some of these seem to be gathered in separate galaxy groups scattered over various parts of the image.
For a sweet treat, throw a little of this into your coffee: Helix Nebula pan and zoom (video)
LEAD IMAGE CAPTION: The blue-green glow in the center of the Helix comes from oxygen atoms shining under effects of the intense ultraviolet radiation of the 120,000 degree Celsius (about 216,000 degrees F) central star and the hot gas. Further out from the star and beyond the ring of knots, the red color from hydrogen and nitrogen is more prominent. Credit: Max-Planck Society/ESO telescope at the La Silla observatory in Chile
Source: ESO
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…