[/caption]
“Just like household dust, cosmic dust can be a nuisance,” said astronomer Ryan Scranton of the University of California, Davis. Scranton is part of a team of researchers from the Sloan Digital Sky Survey that have been analyzing the colors of distant quasars whose light passes in the vicinity of foreground galaxies on its way to the Earth. What they found is that the vast expanses of intergalactic space appear to be filled with a haze of tiny, smoke-like “dust” particles that dim the light from distant objects and subtly change their colors. “Galaxies contain lots of dust, most of it formed in the outer regions of dying stars,” said team leader Brice Ménard of the Canadian Institute for Theoretical Astrophysics. “The surprise is that we are seeing dust hundreds of thousands of light-years outside of the galaxies, in intergalactic space.”
An implication of this finding means that since most distant supernovae are seen through some haze, our current estimates of their distances may be affected.
Dust grains block blue light more effectively than red light. “We see this when the sun sets: light rays pass through a thicker layer of the atmosphere,” said Scranton, “absorbing more and more blue light, causing the sun to appear reddened. We find similar reddening of quasars from intergalactic dust, and this reddening extends up to ten times beyond the apparent edges of the galaxies themselves.”
The team analyzed the colors of about 100,000 distant quasars located behind 20 million galaxies, using images from SDSS-II. “Putting together and analyzing this huge dataset required cutting-edge ideas from computer science and statistics,” said team member Gordon Richards of Drexel University. “Averaging over so many objects allowed us to measure an effect that is much too small to see in any individual quasar.”
Supernova explosions and “winds” from massive stars drive gas out of some galaxies, Ménard explained, and this gas may carry dust with it. Alternatively, the dust may be pushed directly by starlight.
“Our findings now provide a reference point for theoretical studies,” said Ménard.
Intergalactic dust could also affect planned cosmological experiments that use supernovae to investigate the nature of “dark energy,” a mysterious cosmic component responsible for the acceleration of the expansion of the universe.
Intergalactic dust doesn’t remove the need for dark energy to explain current supernova data, Ménard explained, but it may complicate the interpretation of future high-precision distance measurements. “These experiments are very ambitious in their goals,” said Ménard, “and subtle effects matter.”
The new findings are reported in a paper titled “Measuring the galaxy-mass and galaxy-dust correlations through magnification and reddening,” submitted to the journal Monthly Notices of the Royal Astronomical Society, and posted today on the web site arXiv.org.
Source: Sloan Digital Sky Survey
Despite decades of study, black holes are still one of the most puzzling objects in…
74 million kilometres is a huge distance from which to observe something. But 74 million…
Astronomers have only been aware of fast radio bursts for about two decades. These are…
How do you weigh one of the largest objects in the entire universe? Very carefully,…
Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…
Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…